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ABSTRACT 

The method of characteristics is formulated for the computation of 

the supersonic flow of an inviscid,   reacting gas over a smooth three-dimensional 

body.    Various methods of constructing networks of bicharacteristic lines are 

examined from the point of view of numerical stability and accuracy.    A new 

method of forming the network,  which consists of projecting forward along 

streamlines from data points on specified data planes,  is found to be most 

easily adopted to the particular requirements of nonequilibrium chemistry. 

The general method was coded for the IBM 7090 computer and the 

program demonstrated for the case of an ideal gas.    Calculations were made 

for the flow about a spherical-tip 15° half-angle cone at 10° angle of attack 

and a generalized elliptical body at zero incidence.    Since the program yields 

the pressure distribution along specified streamlines,  it is straightforward, 

in principle,  to link it to a finite-rate chemistry stream tube program to treat 

three-dimensional,  nonequilibrium flows. 
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1.1 

Section 1 

INTRODUCTION 

POSSIBLE METHODS OF SOLUTION 

The: general equations governing the three-dimensional,   supersonic 

flow of a reacting gas are highly nonlinear and cannot be solved in closed form. 

Thus,   without resorting to many simplifying approximations,   the only alterna- 

tive is to solve the equations numerically. 

The prime objective of the present study was to develop a numeri- 

cal procedure for determining the supersonic flow field about a general three- 

dimensional body including nonequilibrium chemical effects.    Several techniques 

are available for doing this. 

Most of these methods make use of the hyperbolicity of the general 

governing equations by formulating the problem as an initial value problem 

which can be continued in either time o<  space.    One method,   however,   which 

has recently been proposed for steady flow by Telenin and Tinyakov    treats 

the problem as a boundary value problem which must be solved between two 

boundaries (i.e. ,  the body and the shock) subject to certain known boundary 

conditions.    This scheme,  which has not yet been treated in detail in the 

literature,   is somewhat similar to the direct method of Belotserkovsky for 

two-dimensional and axisymmetric flow fields in that polynomial approximations 

are used to reduce the partial differential equations to a set of ordinary 

differential equations which can be integrated numerically.    Both subsonic 

and supersonic flows can be solved.    However,   since the method can probably 

not be easily extended to include complex chemistry models and unsteady flow 

problems,   it will not be considered any further here. 

Of the remaining possible methods only two appear to be capable 

of providing sufficient detail through the shock layer.    The first of these, 

called the finite difference approach,   consists of replacing the original partial 

differential equations by a system of difference equations  - formed through 

direct substitution of finite differences for the derivates  - which can then be 

solved using a step-by-step numerical scheme.    In the second technique, 

generally termed the method of characteristics,   the equations of motion are 

transformed to a cha racteristic coordinate system and the derivatives are 

again approximated by finite difference equations.    The resulting equations are 

numerically integrated step-by-step along characteristic surfaces throughout 

the flow-field. . 



The finite difference techniques can be further subdivided according 

to the form in which governing partial differential equations are written and 

the differencing techniques employed.    In general,  the classifications would 

be as follows: 

1. Standard (SFD) - If the equations of motion are written 

in either the Lagrangian or Eulerian form and the finite 

difference approximations are substituted directly,   the 

scheme is termed the standard finite difference technique. 

Discontinuities are handled bv imposing appropriate jump 

conditions (e.g.,  Rankine-Hugoniot conditions at shocks). 

2. Finite difference technique utilizing artificial viscosity 

(PFD) - A small "pseudoviscosity" term is introduced into 

the nonviscous flow equations.    The resultant effect is that 

the solutions remain stable even in regions of large gradients 
2 

(e. g. ,  near shock waves) Von Neumann and Richtmyer 

obtained a solution to the one-dimensional,  unsteady flow 

equations using this method which accounts for the presence 

of free boundaries (e.g. ,   shock waves) automatically. 
3 

Burstein    has recently extended this idea to two-dimensional, 

unsteady flows. 

3. Finite difference procedure applied to conservation laws 
4 

(CFD) - Lax    developed a method which treats the governing 

equations in conservation form and uses a differencing 

procedure which has the effect of introducing dissipative 

terms.    The method can handle cases in which the solution 

has certain specific kinds of discontinuities (termed weak 
5 3 solutions).    Lax and Wendroff  ,   Burstein    and Bohachevsky 

have recently applied this method to various fluid flow 

problems.    Also,  Moretti      has used this procedure coupled 

with a method of characteristics approach at the boundary 

points to solve unsteady flow equations. 



4.      Finite difference procedure applied directly to Navier-Stokes 

equations (NSFD) - This procedure which is generally 

difficult because of the complexity of the differential equations 

involved was first applied by Ludford et al.        ,   and more 

recently by Crocco    for one-dimensional unsteady flow. 

While other methods have been proposed,   these four appear to be the most 

useful for calculating multidimensional flow fields. 

In Table I,   a summary of some of the advantages and disadvantages 

of each of these finite difference approaches and the method of characteristics 
7   8  9 (MOC) approach are given.    '    '       On the basis of these comparisons the 

following conclusions appear warranted. 

1. Although finite difference methods can treat shock waves 

and other discontinuities,   their accuracy is impaired 

(especially near the shock) because they have the effect 

of smearing out the shock wave over several mesh points. 

The effect of this smearing on the rest of the flow field 

for multidimensional flows is not known at present. 

2. Fixed boundaries are more accurately treated by the 

MOC technique when the body shape is arbitrary. 

The finite difference schemes appear to be better only 

when the body shape is such that points on the body lie 

along coordinate lines so that body points are mesh 

points.    Otherwise,   interpolations,  which could lead to 

errors and/or possibly instability,  are required. 

3. The disadvantages of the method of characteristics approach 

are that the program logic  required to code the procedure 

for the computer is quite complicated and that in order to 

obtain a solution at a given mesh point,   considerable iterating 

is needed.    This latter situation,   of course,   adversely 

affects the computing time required to obtain a solution. 



TABLE I 

COMPARISON OF POSSIBLE APPROACHES 

MOC SFO PFD CFO NSFO 

1. FREE TREATED AS TREATED AS AUTOMATICALLY SAME AS SAME AS 
BOUNDARIES DISCONTIN- DISCONTIN- HANDLED - HOW- PFD PFD 
(SHOCKS, UITIES USING UITIES USING EVER RESOLUTION 
CONTACT SPECIAL SPECIAL IS SPREAD OVER 
SURFACES. RELATIONS RELATIONS SEVERAL MESH 
ETC.) WIDTHS 

2. FIXED EXACT SAME AS DIFFICULTY CAN TREATED TREATED 
BOUNDARIES BOUNDARY MOC ARISE BECAUSE BY INTER- BY SPECIAL 

IS SOLVED ARTIFICIAL POLATION RELATIONS 
USING VISCOSITY IN- 
SPECIAL CREASES ORDER 

1 

RELATION OF EQUATIONS 
THUS REQUIRING 
EXTRA BOUNDARY 
CONDITIONS 

3. NO. OF INDE- 3-SPACE SAME AS SAME AS MOC BUT SAME AS SAME AS 
PENDENT PLUS MOC MORE DIFFICULT MOC MOC 
VARIABLES TIME BECAUSE EXTRA 
WHICH CAN BE BOUNDARY CONDI- 
SOLVED TIONS MUST BE 

INTRODUCED 

i». STEP SIZES POTENTIALLY SMALLER THAN SMALL BECAUSE SAME AS SAME AS 
LARGEST MOC BECAUSE 

TRUNCATION 
ERRORS ARE 
LARGER 

HIGH 
GRADIENTS 
REQUIRE A 
FINER MESH 

PFD PFD 

5.  SOLUTION UNEQUALLY EQUALLY SAME AS SAME AS SAME AS 
GRID SPACED SPACED SFD SFD SFD 

6. ACCURACY POTENTIALLY INTERMEDIATE LEAST ACCURATE ACCURACY SAME AS 
MOST ACCU- ACCURACY BECAUSE ERRORS IS IM- CFD 
RATE BECAUSE BECAUSE OF CAN BE INTRO- PAIRED BY 
THIS METHOD LARGER DUCED BY NOT SMEARING 
OF SOLUTION TRUNCATION PROPERLY SPECI- OUT SHOCK 
MOST CLOSELY ERRORS FYING EXTRA OVER 
FOLLOWS FLOW BOUNDARY SEVERAL 
MODEL CONDITIONS MESH POINTS 

7.  PROGRAMMING BY FAR MOST OF INTER- SIMPLEST SAME AS SAME AS 
DIFFICULTIES DIFFICULT MEDIATE 

DIFFICULTY 
PFD PFD 



As noted initially,  the prime objective of the present study was to 

develop a numerical procedure for determining the flow field about a general 

3-D body including nonequilibrium chemical effects.    Particular interest 

was centered in the afterbody or supersonic portion of the flow field because 

for a typical spherically blunt nose,   the forebody or subsonic-transonic 

portion of the flow field can be obtained from a transformation of an appro- 

priate axisymmetric solution except at high angles of attack.    One naturally 

wonders whether this problem can be most efficiently treated using the 

method of characteristics or one of the finite-difference approaches.    The 

answer to the question depends on three considerations: 

(a) Computing time per solution 

(b) accuracy and reliability of the solution near the shock and 

body 

(c) prospects for treating chemical nonequilibrium effects. 

When the present work was started in June 1963,   there was not sufficient 

information available concerning the finite-difference methods to even begin 

to consider the answer to this question rationally.    In fact at the present 

time,  after 3-4 years experience with both general methods,   the answer to 

this question is still not clear in the case of reacting gas flows.    In 1963,  it 

was decided to pursue the method of characteristics because considerable 

success had been attained using that method for Z-D and axisymmetric flows 

and it yielded results having the desired detail near the shock and body.    It 

was also clearer how procedures for treating nonequilibrium chemical effects 

could be included in the program to various degrees of approximation (ex. 

chemically frozen along streamlines,   finite-rate streamtube with locally 

frozen gas chemistry for obtaining flow quantities in the mesh calculation, 

etc. ).    Hence this  report deals in detail with applying the method of char- 

acteristics to three-dimensional reacting flows and no further consideration 

is given to finite-difference methods.    Questions regarding the relative merits 

of the two approaches must await further work. 



1.2 SOLUTION OF HYPERBOLIC PARTIAL DIFFERENTIAL 
EQUATIONS USING THE METHOD OF CHARACTERISTICS 

The theory of the method of characteristics as applied to quasi- 

linear,  hyperbolic equations has been known since Monge and Ampere in 
g 

the early nineteenth century.    A monograph by Massau    first indicated the 

use of the theory to solve a system of two equations in two unknowns.    Later, 
40 in 1928,   Lewy      used the method to show that the initial value problem for 

a quasi-linear hyperbolic differential equation in two independent variables 

has a unique solution.    Titt      later generalized the method of Lewy to the 

case of three independent variables.    Since that time,  the method has been 

utilized by several authors in formulating methods for solving many different 
12 13 hyperbolic problems in fluid mechanics.    Ferri      and Meyer      discuss mach 

of the earlier work as it applied to several different problems in fluid 

dynamics and give a complete list of references.    Now,  with the recent 

development of faster and larger electronic digital computers,  more 

ambitious problems such as the one described here,  may be attempted. 

Thus,  it is now possible to consider the flow over general bodies exhibiting 

rather general motions and including complicated thermochemical effects. 

The Cauchy problem (or initial value problem) considered here 

can be summarized simply as follows.    Given an initial data surface and 

known boundary conditions (body surfaces or shock waves),   the method of 

characteristics is to be used to obtain the solution of the governing partial 

differential equations at another surface separated in either time or space from 

the  original one.    The solution will be obtained at a discrete set of grid 

points on the new surface by integrating the governing equations numerically 

along certain selected characteristic lines.    When as many new grid points 

as needed are obtained,  the surface thus calculated is taken as the new initial 

value surface and the next adjacent surface is obtained similarly.    The 

process is then continued step-by-step until the desired portion of the flow- 

field is solved.     This technique has been used successfully by innumerable 

authors for solving flow fields in two independent variables.    However,   very 

little actual numerical work has been performed for problems involving either 

complicated thermochemical effects or more than two-independent variables. 



It is the object of the present work to obtain a numerical method for solving 

just such problems. 

Several authors have discussed the applications of the method of 

characteristics to multidimensional flow fields from a purely theoretical 

viewpoint without offering any numerical solutions.    The3e include:    (1) the 
14 

pioneering efforts of Thornhill     ,  who discussed two possible characteristic 

networks for three-independent variables,   (2) Coburn and Dolph     , who 
15 

extended the work of Titt to fluid flow problems,   (3) Clippinger and Giese     , 

who used a generalized vector formulation to derive the basic characteristic 

equations and (4) Holt     ,  who established a finite difference scheme based 
17 

upon the earlier work of Coburn and Dolph.    More recently,  Fowell      has 

written the basic finite difference equations which apply to one of the networks 

which Thornhill proposed.    Although,  as will be discussed in Section 3. 

Fowell's method was shown to be unstable,  it has proved to be very useful 

in developing stable multidimensional integration analogs. 

A second group of authors have succeeded in obtaining some results 

using numerical computational procedures.    The first few of these were 

limited to simpler calculations which were accomplished by hand with the 
18 

aid of desk calculators.    Among these are included the works of Ferrari     , 
19 20 2' 22 

Moeckel      and Bruhn and Haack     .    Later Butler   ' and Tsung      succeeded 

in obtaining some limited solutions by utilizing th<; earlier digital computers. 
23 24 9 More recently,  Moretti et al.      ,  Kackova and Cuskin      and Sauerwein 

have published results obtained with the present generation of high speed 

computers.    The most important of these various schemes will be discussed 

and compared in Section 3.     It would appear that the possibilities in this 

area have just begun to be fully realized and with the addition of still faster 

and more efficient computers even more complicated problems should prove 

amenable to solution using the method of characteristics approach. 

The extensions required to the MOC to include nonequilibrium 

chemistry effects have been set forth by Chu     ,  Resler      and Wood and 
27 29 

Kirkwood      among others.    Sedney et .il.       have applied the numerical method 

to calculate vibrational relaxation and Capiaux and Washington      and 
31 

Eastman      have utilized a simDlified reaction system without relaxation. 



id. 33 Zupnik et al.      ,   and Widawsky      have recently developed and applied the 
34 

theory for calculating nonequilibrium nozzle flows,  while only Wood et al. 
35 and Curtis      have applied the method to obtain numerical results for the 

afterbody flow fields including the full reacting and relaxing flow equations. 

The present effort describes the development of a method which 

in principle is capable of calculating the flow field in the vicinity of a general 

three-dimensional body including nonequilibrium thermochemical effects. 

Since the development includes the unsteady flow equations,  the scheme could 

eventually be used to calculate the flow properties in the vicinity of a blunt 

asymmetric body or a sharp cone at angle-of-attack.    In Section 2  the basic 

theory of the method of characteristics as it applies to the present problem 

is given.    The relations are written in terms of two special characteristic 

coordinate systems,   each of which is thought to be best for numerical 

applications.    The proposed integration network is presented in Section  3 

and is discussed and compared with other schemes which have previously 

been utilized.    The discussion includes the requirements which are thought 

necessary for insuring stability of a successful integration procedure.    A 

description of the numerical scheme as it applies to each of three unit 

processes for calculating the flow properties at points in the field,   on the 

body surface and on the shock wave surface is given in some detail,   including 

the modifications necessary to account for nonequilibrium chemical effects. 

The remainder of the work describes the actual machine program 

in which the methods proposed in  Section 3  are applied to solve practical 

flow problems.    In the present case,   the program is limited to steady,   super- 

sonic, three-dimensional, frozen-inhomogeneous or ideal gas flows;   however, 

the program was written in such a way that the extension to more complicated 

thermochemical models is relatively easily accomplished,    A discussion of 

the problems encountered in writing the program and some typical results 

for the flow fields around conical and elliptical afterbodies are given. 

A description of the machine program and comments concerning 

the functions of each subroutine are presented in Appendix A.    Flow diagrams, 

output description and input and operating procedures are also included. 



Section 2 

DERIVATIONS OF GENERAL EQUATIONS 

In this section  the equations which are required to solve a 

general nonequilibrium,   three-dimensional steady flow problem numerically, 

utilizing the method of characteristics,   are derived.    The general theory 

of the method of characteristics as it applies to a system of first order 

hyperbolic partial differential equations is first developed.    Then,  the general 

equations governing the flow of a reacting and relaxing gas are presented. 

Finally,  the theory will be applied to the given governing equations in order 

to determine the characteristic conditions. 

2. 1 THE METHOD OF CHARACTERISTICS 

The general theory for the method of characteristics is well 

developed and may be considered classical.    Only that part of the theory 

which is necessary for the development of the proposed numerical scheme 

will be presented here.    A more complete development may be found in 

many works on partial differential equations among which the more notable 

are Courant and Hubert      and Hadamard 

A general system of n -first order,  quasi-linear partial 

differential equations in   n -dependent variables    u,^   and  m -independent 

variables X- is considered.    Using the index summation notation of cartesian 

tensors,   these can be written in the form 

where the a>yU)?/l    and   ^   are given functions of the   u^  and   X,     .    Quasi- 

linear systems of equations are those in which the highest order derivatives 

appear linearly.    The restriction here to first order equations does not 

imply any loss of generality,   because systems containing higher order 

derivatives can be reduced to a system of first order equations by 

defining new dependent variables. 



The method of characteristics in two-independent variables 

which transforms the governing partial differential equations into 

ordinary differential equations along certain characteristic directions is 

a very special case of the general theory,  and hence it cannot be easily 

generalized.    However,  the basic property that characteristic curves in 

two-variables are curves along which the derivatives are continuous but 

across which derivative discontinuities may occur can also be taken as 

the definition of a characteristic in m -independent variables.    This 

property is used in two-dimensions in order to identify the characteristics 

as paths of waves in the physical model.    In general then,  a characteristic 

in m   -independent variables can be defined as a subspace of    m- 1 - 

dimensions along which the derivatives of the dependent variables are 

continuously differentiable but across which discontinuities in the variables 

are allowed to occur.    A characteristic surface (or hypersurface in more 

than three-independent variables) is thus once again associated with the 

surface generated by a wave front. 

If the dependent variables  a,   are given as smooth functions on 

a characteristic surface,   it then follows that the "interior" derivatives, 

that is,  derivatives tangential to a characteristic are continuous and only 

the "exterior" derivatives (derivatives normal to the surface) may be 

discontinuous. 

We consider a characteristic surface whose equation is 

f(*i) = O (2) 

and apply a transformation to the  m   -independent  characteristic variables 

ju' by taking 

Vr H*i) i    *2 --■ $(*j>    */-- *M ;   Vr *(V (3) 

Here, m  - 4 and the functions   <j, h    and   k   are arbitrary provided they 

form an independent set with   /    .    At the characteristic  X>)   - 0 the 

derivatives , ,    ,     •      and   -\ ;    are "interior" to the characteristic 

and are therefore continuous (since Up   are smooth).    Thus,   only the 

derivatives   &uj> may be discontinuous. 

10 



Now,  the derivative of any dependent variable u^ with respect to one of the 

original independent variables is related to its derivatives  with respect to 

the new variables ( X ■ ) by the equations, 

du^,       dxj dob,, 

**t **/ 
(4) 

The jump in y      at   Xi, 0 is therefore 

du^ 
s 

Joe,, 

f* - 
du.. 

*»/ 
£1 (5) 

since all other derivatives are continuous as mentioned above.    If (5) is 

substituted into the set of equations (1) a set of linear homogeneous 
[du, T äXi ' 

■=—*H   with coefficients depending upon the  ———   and the 

dependent variables   up    is obtained as 

du. 
dz <V^/ - o (6) 

o U ,) 
where the   ^n. p i  are the transformed coefficients of        #% .       which are 

known functions of the  U^ and X^ *"-»    can be Not all of the jumps 

zero if a genuine discontinuity is possible.    Hence,  the determinant of the 

coefficient ü.rray   O-^^ji    must vanish,   giving a relationship between the 

coefficients which must be satisfied if -f (*ij- 0 is to be a characteristic. 

Thus,  the characteristic surfaces (or hypersurfaces) are defined by 

Equation (7) is generally termed the characteristic equation for the 

(7) 

characteristic     zt'~ constant. 

The vanishing of the coefficient determinant (7) can be seen to 

have another implication.    Writing the original equations (1) in terms of 

the new independent variables {?/, */, */>*/. • ' •) a set of equations is 

obtained which will have the form 

11 



A~-Wi£ - -W*;£^ •'*,(*>J&- *•••***•        (8) 

Where, the functional form 

A/i.y(4) =   Q>/u.?i -j^- (9) 

is the matrix of the system of transformed equations correspond ng to (1) 

when / is replaced by 0 , and the vector Bp. contains all of the terms in 

the original equations which do not contain derivatives. 

Now,  if   f   (Xj ) is to be a characteristic manifold then by (7) the 

determinant of   Apt (/   ) must vanish.    Thus the rows of  Apf ( r   ) must 

be linearly dependent and there exists a vector   hjt   such that 

h^A^tf)* O       on       f(*i)=0 (10) 

If Equations (8) are multiplied by this vector a linear combination of the 

equations is obtained which does not involve derivatives with respect tc 

X>t   as 

kA»,(fJ%P+'kAM,(X)gpL+-.>   =AM3M (11) 
* 3 

Equation (11) is called the characteristic or compatibility condition and 

does not involve derivatives with respect to the coordinate  # '  ,   i.e. ,   in 

the direction normal to a characteristic surface.    There may be more than 

one such equation associated with a particular characteristic surface,  but 

there must always be at least one.    Reference 38 contains a discussion of 

the possible number of compatibility equations associated   with a given 

characteristic manifold.    The compatibility equations are fundamental to 

the method of characteristics and will be derived below for the cases of 

three-dimensional steady and unsteady fluid flow. 

12 



2.2 THE EQUATIONS OF MOTION 

The equations of conservation of species,  mass,  momentum 

and energy along with an equation of state govern a three-dimensional 

nonsteady,  nonequilibrium gas flow.    Neglecting all transport effects 

(viscosity,  heat conduction,  etc.) these equations in non-dimensional 

form become: 

Continuity Equation 

g+ute+rte+^te+s/r+fZ+T*) *° (12) dt      dx        dy d} \ <*x     dy      #} / 

X ~ Momentum 

du.        So,       da        da.       1 dp - 
Jt dx        dy df.    /o dx 

dh _.   df>      «M      dh A {dp    dp    dp       dp) 
 +U.— -hir—+ur— ~-(—-+tb — *v—* us—?-)     -  O 
dt       d*       du       dx   jo\dt     d%      du        dk' 

(13) 

y - Momentum 

dv       dv       dtf dV      t dp . .. t. — +U,—+V — + W -— + — -£- =   O (14) 
do dx        ey d}      yO Jy 

Momentum 

<dar      dw     dew       <duT    f c?p 

at        dx       dy        df    /> da, 

Energy Equation 

(16) 
dy       dx   /»' 

Conservation of  * th Species 

ig+vpL+r &**>££. .   SL      ,. £,/...-,A/3   (17) dt dz dy d* /> .*ii 
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Conservation of   *  th Element 

k-t,2.--,£     (18) 

Vibrational Energy Equation 

jt        J*        <?<j Jf *v.        J -   /, A/I/ (19) 
j 

Equations of State 

MS 

h -Z hi yt (20) 

and 

/vs 
(21) 

Equations (1 2)-( 21)   represent  MS+A/V+ 7 equations in   A/5+NV+ 7 unknowns 

with MS-tAfV-E   functions ( Gf , Rv.      ) to be specified and thus form a 

complete set.    Most of the thermodynamic and chemical variables have 

been non-dimensionalized by using their free-stream counterparts.    The 

exceptions to this are the pressure which is normalized with respect to 

/•» Üeo*    anc^ *-he energies for which  Ü T^       is used.    Distances are 

normalized with respect to a characteristic length  L?  (which in the case of 

a blunted body is usually the nose radius of curvature),  and time with 

respect to ——    .    In the Equation of State (21)   y^ is the normalizing term 

A = (22) 

The gas in the shock layer has been assumed to consist of 

A£5    monatomic and diatomic species A^    connected by the   R     reactions 

14 



A/S k* ■    *S 

L^Hj&LW t-f,2.-:NR     (23) 
r*« 

where    jf-•    and       jJ- represent the stoichiometric coefficients. 

Concentrations are expressed in mole fractions referred to the free stream 

molecular weight or 

r; I 

A/S =   7(.  AW,, (24) 

Equations (17)and(18)govern the rate of change of the concentration of the 

i th species.    Here,   Of •    is the number of atoms of the     k th element 

per molecule of the     i, th species,   £ represents the number of elements 

and NS   represents the total number of species.    Equation (21) governs the 

rate of vibrational energy relaxation where 6 •   is the vibrational energy 

for each of the   NV   species which are not in vibrational equilibrium. 

The source terms   Q     and    Rv.     are complicated functions of 

the temperature,  density and the rates of certain reactions involved in 

the species   i    and   j   .    Since the exact forms of the source terms are 

not necessary for a development of the proposed numerical solution,  a 

full discussion of them shall not be given here.    Reference^ (39) and (33) 

describe the source terms which are currently being used for non- 

equilibrium flow field calculations. 

The enthalpy of the  J th species used in Equation (20) and the 

other species thermodynamic quantities are generally calculated from a 

single harmonic oscillator approximation to the diatomic molecules or 

from curve fits as functions of temperature.    Here,  the caloric equation 

of state of the    c th species is given as 

o 
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where J'    includes the energy of rotation and translation, ht  the neat of 

formation and   6t    the energy of vibration.    Equations (25),  (20) and (21) 

can be used to eliminate the derivatives of />   in Equation   (12)    Differentiat- 

ing Equation (20) gives 

,. A/J        j. Ms 

(26) 

where 
dt c?t 

Stokes derivative.    Substituting lor  h-   from (25) 

j j j 

U   ■££   JtV'^7  + <i/<?ä     is the "substantial" or 

it 
dt {?/'[*T Id*  & r> \dTjdi +£,"*  dt    faK 

d64 

dt (27) 

Then by defining 

NS        ,r       /VJ-/W     ,, 
c = r r HL + r yiL. (28) 

as the specific heat at constant pressure,  Equation (27) becomes 

(29) 

The equation of state (21) can be used to eliminate %j-     from Equation (29) 

Differentiating (21) and combining the result with(29)   gives 

NS r vs A/s 

P  c^XT   at   <o dt       L dt     (cr7/ U e      L/'" ' 
~ t*1 ,*i /-; 

(30) 

_/ 
A 

where    9\ =    —-      and    hW  = 
1 

NS (31) 
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Eliminating the -g   —£-       term from (12) and (30) gives finally 
'^    oLt 

*     jOGl,    dt r 

where .     /   NV us . MS n 

?'-F^( E  *** + £%*£}-**£& (33) 

contains all the nonequilibrium rate terms from Equations (17) and (19) and 

a,  = —e.  (34) 
CfiAW-t K     ' 

25 is the frozen speed of sound.    Chu      has shown that the frozen sound 

speed a,  defined by (34),   is the wave velocity of a flow which is not in 

equilibrium and thus,  can be associated with the rate of propagation of 

characteristic surfaces.    This result will be derived in the next section. 

Equations (13),  (19) and (33) become the basic equations of change to which 

the theory of characteristics developed in the last section will be applied. 

2. 3 THE CHARACTERISTIC RELATIONS 

Here,  the theory presented in Paragraph 2. 2 is applied to the 

flow equations given in Paragraph 2. 1.    The governing equations for 

steady flow are obtained from Equations (12) through (21) by setting the 

terms involving    -i-     identically equal to zero. 

Applying Equation (5) to the governing flow equations presented 

in Paragraph 2. 2 leads to the following homogeneous equations for the 

jump conditions at a characteristic surface 

17 



tmmm        ** """^ ■iIJjlUljpiUIill.il JUUUU V.IJUlMHLtU II   HWi   IHM HP   PP       W I'»"""« I BÜ 

(35) 

^ /»«t 
a^, v-^/   *•*/■/" (36) 

/ r 
/» at; (»?**"?* +"',)[£;] = 0 (37) 

ft 
+ {«?* + ir/y + orfj ) 'dv' 

ft 

V 
+ (<*?* + rf¥+ur?f) Bus 

dx>' 
= 0 

(38) 

(39) 

(uf,  * efv   *urff )  [^4J     --   0 L-£-H,E+2,-;NS (40) 

/tt/^   v» y/y   * «,/£ j <?£, 

*»/. 
«/ = f,2,,^V (4!) 

The vanishing of the determinant of the coefficients (Equation 7) implies that 

for     &.   - 0 to be a characteristic surface the condition 

(*?, - *-?„ ^^^J"^W"^*^>^2-^V^/*V)} - °   (42) 

must be satisfied.    It can be seen from Equation (42)that there are two sets 

of characteristic surfaces corresponding to each of the two distinct facfors. 
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Each factor in(42)corresponds to conditions for the directions 

of the normals ( £,, f   , /.   ) to the respective characteristic surfaces. 

The first factor is the dot product of the velocity vector 

ö "  Uc+irJ+urt. (43) 

and the vector normal to the characteristic surfaces    •£(x.t/Jf.) = 0 

a*1     <?<,<> +J} Vf=^7+ ^J + ^T (44) 

Hence,  the vanishing of this product implies that the surfaces composed of 

streamlines are     NS-E+NV+2   - fold characteristics corresponding to the 

power of the term.    This fact will prove to be very useful in carrying out 

a numerical integration scheme for the full nonequilibrium equations. 

The second factor of (42)implies thct the normal vector 

{•ff, /„ , -f.)      to the surface 

7(x,y,ß.)     = constant (45) 

lies on a cone of the second degree given by 

*ik »i'%1 ={u.xf'+v*t+w*s'f'-a,*(x;*+xf+A^) = O (46) 

Equation (46) can be shown to be real and thus the governing equations are 

hyperbolic whenever £ = (u + v   + ur   )>o> i.e.  when the flow is supersonic. 

Any displacement ( dXj    dy}   otz.) along the characteristic 

surface (45)  through a point P can be given in the limit by 

f*dx + Pydy +fyd}   = 0 (47) 

and it follows that if ( fx , t„ , f-      ) lies on the normal cone (46)  through 

P, then the envelope of all such displacements through P is itself a 
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quadratic cone.    This envelope,  which :s called the "characteristic conoid" 
36 at P is given by (See Courant and Hubert P.   563)      inverting the quadratic 

form (46) as 

A-j'dx^d^ * (tr'+ur'-aa)dxM + (u,'+iv'*-a,*)<tf,*+('u**r*~a,')dji 

(48) 

- Zu,fd)6oL<j - ZaurdXeLf - 2rurdt/d* = O 

where    0uift     is the inverse of *•■     in (46).    Equation (48) can also be 

shown to be the equation of the well known Mach conoid which usually 

appears in supersonic flow.    In general,  it represents a curvilinear cone, 

whose coefficients are functions of the coordinates (X, y, y ) but whose 

generators are tangent to the generators of the local Mach cone at P.    In 

any numerical procedure, the characteristic conoid is replaced by an 

average approximation to the local Mach cone. 

The generators  d%^     (called the bicharacteristics) of the local 
21 Mach cone (48) can be expressed parametrically by 

dxi =   (a- * Cati C03& * Cpt sin6)dt (49) 

where   &    is a parametric angle,   OS■, fi^   are an orthogonal set of vectors, 

C is defined by 

c "o~rr^ =Tfrj <5<» 

and   7   is the time taken for propagation of a wave along a ray corresponding 

to a bicharacteristic. 

To determine the oc ■   and   fit  ,  we now consider a special 

intrinsic coordinate system of the type originally propoaed by Thornhill 

(Figure 1).    Here, <f   is the angle made by the plane containing the lines j and 

I   with the plane containing the lines Q   and y .     / is a ray of the character- 

istic conic (Mach surface) making an angle^ö   with the velocity vector  q and 
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0, i(J    are the polar angles of the velocity vector.    The coordinate system 

is chosen aligned as shown with £    along 5 , 7j    in the pi. ne of y    and 

5     perpendicular to 5 and $ perpendicular to the plane of V   and 9   . 

£3 rj   and   $    are chosen to be unit vectors and are given by 

£« cos 9 cos tpi'+ stn&J + cos 9 stnyk* ~(tju + vj-t-urJ) (51) 
r 

n = -Mn&cos tf>L +■ cos 8j -sinGsin ipk  = ati+ ae^j + CC3 Jc (52) 

Therefore,  in the form of (49)    the bicharacteristic direction   /       is given 

by 

dx   - (oe> - Csin 9cos ip cos 6 - Csin <psin&)dY 

dy - (ir+ CcosOcos$)dr (54) 

ct-Z. - (u/*- Cst/7 ipsi/7 0cosS + Ccos (p stn S)dr 

2.4 THE COMPATIBILITY EQUATIONS 

As shown in Paragraph 2. 1,  the compatibility equations are 

determined by forming a linear combination of the flow equations and 

choosing the coefficients such that the derivatives in the direction normal 

of the characteristic surface disappear.    There are two sets of compat- 

ibility equations corresponding to the two sets of characteristic surfaces 

which were described in the last section.    Actually since the streamlines 

are WS-E +-NV+2. -fold characteristics,  there are MS -E+NV+ % compatibility 

equations which can be found to apply along them. 

The equations which apply along the streamline surfaces could 

be found by applying the method developed in 2.1  to the full equations of 

motion.    However,  in this case,  it is easier to recall that the equations 

sought do not contain derivatives in the direction normal to the streamline. 

This property can be used to choose the required relations by inspection 
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from the original partial differential equations.    The streamline directions 

are given by 

d£ - fdt (55) 

where § is the coordinate along the streamline.    Thus,    NV-£ •* A/tT 

compatibility equations can be found by transforming Equations (17) and (19) 

to directional derivatives along the streamline.    The equations become 

and 

#-  ^ ,/'-/Ji»J---.W(57) 

By introducing Equation (20) for the enthalpy/?   into the energy equation (16) 

and differentiating in the manner used to obtain Equation (29),  the energy 

quotation along a streamline can be written as 

One further relation is required.    This is found from scalar multiplication 

of the momentum equations and the velocity vector   5    as 

_*/'') = -±(±L\=.-Lää 
dg\2 * /       /o \dll       A.  d( (59) 

where the last term on the right hand side of (59) is obtained from the 

energy equation (16).    Since Equations (56) - (59) contain no derivatives 

in the direction normal to the streamlines,  they are the required 
NS-£+rtV+2compatibility equations. 
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The compatibility equation which applies along the characteristic 

conoid    (48)      can be found by applying the method of Paragraph 2. 1 to 

Equations (13) and (32).    Equations (35) - (39) are representative of the 

equations of motion transformed to characteristic coordinates (   *f > *£ >   \      ). 

Multiplying these equations by A;,^,A and h  respectively leads to the following 

equation for the term   hM ^Mp(^)   j%     presented in Paragraph 2. 1. 

The condition for which the surface  -ffXjtj, z.)   = 0 is to be a characteristic 

surface is that 

h^A^sff)  = O (61) 

Hence,   the coefficients of   -r—*    must all vanish identically.    Equation (60) 

thus leads to the following expressions for the linear factors h„     . 

m.-fäWf.* h 

Using   hese values for h^, ,   the compatibility equation corresponding to 
Equation (11) becomes 

where  4>   - ^, h     for   i   ~Z,3   respectively. 
23 
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Equation (65) can be simplified by choosing, as the coordinates 

( XI/J #t , z'   ) the basic characteristic coordinate system.    Referring 

again to Figure 1, take as the coordinates   Z"   ,  /V    and Äf     where   L 

is along the bicharacteristic given by  S   , N   is orthogonal to  L    in the 

plane of   y    and   £     and Ä7   = Lx f?   is orthogonal to the characteristic 

surface and positive outward.    Here,( /c/, X>x'3 &3')  ^  (M,L, N) 

and 

■fi " M » cos/3 cos Srj + cosJBsi.fiSC ~ Sen/Sf (66) 

* f » L   - sinp cos &rj -h si/i/3str) 6£ + cos p^ (67) 

h~ " N • sin <SrJ - cos SC (68) 

where    A »  sin "   (69) 
' M 

With respect to the characteristic coordinate system (46) - (48)    Equation 

(65) becomes 

—    —j + (- sin/5 cos S cos 9 cos <f> - sinfisin 6 sin <// - cos /ScosSsonO cos p/stnfi 

-cos/SsitSsirtjy/jin/SJjz- + (cos8sinfi-sin£sin&cos * >    u 

■*■ (sin/5co3Scos9 + cos */8cos S cos 9/sinp)££ *■ sin 6cos 9 ~ im 
(70) 

+ (sin/i sin 6cos ip - cos 6 Sen 9 sin ^ sinp 

- cos*/ScosSsin8sin iff/sin/9 + cos'fisinScosp/smfl)i^- 
oL 

+ (- sin Sun 9 sin <j> - cos6 cos?) 4~   ■ -O F 

Changing from the variables ( pt u, V, of) to the variables (p,Q,,9 , (ft  ) 

and simplifying,  the final form of the compatibility equation becomes 

coi/6  dp „d*   , _    .    „ B<P 
 T -rr + CosS-^r-  + cos & scnS -=— 
yoo' dl dl dl /71) 

= - simp {cos 8 cos 6 — -sm6-~- +jji J 

where _£    and    ——   are the derivatives along and normal to the 
ai        dM 
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Figure 1 BASIC COORDINATE SYSTEM 
3-D STEADY FLOW 
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bicharacteristic S    .    Note that Equation (71) contains derivatives of 

p,6   and ^ only.    Equations (56),   (57),  (58) and (71) are the basic set of 

equations which will ised to develop a numerical integration scheme for 

three-dimensional steady flow in Section 3. 
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Section 3 

THE NUMERICAL SOLUTION 

In this  section,    the details of a multivariable numerical integration 

scheme,   which is based upon the method of characteristics applied to the 

equations developed in Section   2,   are presented.    First,   the general require- 

ments for the stability and convergence of such a scheme are considered, 

and then several possible difference networks are discussed and compared. 

Finally,   the details of the proposed techniques are given for both steady and 

nonsteady nonequilibrium flows. 

3. 1 STABILITY AND COVERGENCE 

In ail numerical approaches,   the solutions to a system of partial 

differential equations are represented by values of the dependent variables 

for certain discrete values of the independent variables.    In general, using 

this procedure,   there are three types of errors which would cause the 

numerical values to be different from those which would be obtained from 

the exact solution of the partial differential equations themselves.    These 

can be classified as truncation errors,   round off errors,  and errors which 

appear in the initial values.    The first is the error which results froin 

using a difference formula which is an approximation to the true equation 

and may be considered as the error incurred from representing an infinite 

series by a finite number of terms.    The second arises from the need to 

use finite decimal numbers in the computation,  while the last may occur 

because of inaccurate description  of the initial and boundary conditions. 

In principle,   the cumulative effects of these errors upon the solution can 

be kept under control by reducing the mesh spacing between grid points and 

carrying out the calculations with sufficiently high precision. 

In practice,   however,   the cumulative departure from the exact 

solu.'on for a fixed range of the independent variable will usually grow 

unboundedly as the mesh size approaches zero.    This is because the precision 

required to sufficiently control the growth would far exceed the capacity of 

existing computers.    If this growth occurs exponentially as the mesh size 

decreases,   it is generally considered unmanageable for computational 
7 

purposes,  and the procedure is termed unstable.       The establishment of 

conditions necessary to assure stable solutions thus assumes a major role 
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in any numerical scheme.    For a set of first-order linear partial differential 
40 equations in n-independent variables,  Courant,  Friedrichs,  and Lewy,       in 

their classical paper,  have shown that a necessary conditions for stability 

(i. e. ,  the C-F-L stability condition) is that the domain of dependence of the 

partial differential equations (e.g.,  the circle   C ■*■ q    s £(€) for the 

Mach cone in steady flow shown in Figure 1) be contained within the domain 

of dependence of the difference equations.    This latter domain is usually 

called the "convex hull" of the difference scheme and is the region obtained 

by connecting with straight-line segments the outermost points used in 
7 

solving the difference equations.    Forsythe    indicates that,  for a central 

differencing scheme using four initial points in three dimensions,  or a 

comparable number in n-di.mensions,  the C-F-L conditions is both necessary 

and sufficient to guarantee stability,  and thus also convergence of the differ- 
41 

ence scheme.    Hohn      has also found this to be the case when simplical 

difference schemes (i. e. ,   schemes where a minimum number of points are 

utilized in the initial plane) are used for solving linear equations. 

While the equations of motion presented in Section 2. 2 are not 

linear, it can be argued on physical grounds that the C-F-L stability criterion 

is also likely necessary for stability of a difference scheme based upon 

these equations.    Consider, for instance,  the simple case of supersonic 

flow parallel to the x-axis and assume that the four points (0, + hf, 0), 

(0,- hf , O)   ,   \ 0, 0) ~ht)  ,  and   ( 0, 0, hz)      comprise the points in the 

initial plane X - 0   to be used in a central differencing scheme for calcu- 

lating the flow properties at a new point   (k, 0,0)   ,    (See Figure 2 ). The 

domain of dependence of the difference equations is then the rhombus 

formed with the four points in the initial plane as vertices.    If the C-F-L 

stability condition is not satisfied,   the circle which is the intersection of 

the Mach forecone from (k.,0,0) with the initial plane (e.g.,   the domain 

of dependence of the differential equations) would not be contained within 

the rhombus.    Hence,   certain initial values (e.g.,  points within the circle 

but outside the rhombus) could be arbitrarily changed without affecting the 

solution of the difference equations.    The departure of the difference solution 

from the solution of the differential equations could thus become very large 

and the scheme would be unstable. 

28 



Mathematically,  Strang   "  has shown that the   convergence of the 

nonlinear equations depends uniquely upon the stability of the linear equations 

for cases where the equations and their solution possess enough continuous 

derivatives.    For many cases of fluid flow,   where the gradients are not too 

high (e.g.,  excluding flow throuph shocks,   etc.) these conditions would be 

expected to be met,   and the C-F-L condition should be sufficient to insure 

stability using the simple differencing schemes discussed above. 

Although the above discussion applies specifically to numerical 

solutions using a direct finite difference network,   the physical arguments 

given in paragraph three can also be seen to hold  when a method of char- 

acteristics approach is used.    Now,   the four vertex points of the rhombus 

(convex hull of difference equations) would represent base points of four 

bicharacteristics along which the equations are to be integrated.    These 

points would now lie on the circle and the rhombus would thus be contained 

completely within the circle.    Hence,  when no other points are included, 

the scheme would necessarily be unstable because some of the initial data 

is neglected.    In the technique described below,   the over-all procedure 

utilizing a method-of-characteristics solution is stabilized by introducing 

initial data points outside the domain of dependence of the differential equa- 

tions and obtaining the flow properties at the bicharacteristic base points 

by interpolation among these initial points along the lines employed by 
41 22 42 Sauerwein and Sussman,        Tsung,       and Butler and Talbot. The extra 

points added now form the outer boundary of the convex hull of the charac- 

teristic difference network and the C-F-L stability condition can be modified 

to apply to this region. 

3.2 CHOICE OF A PRATICAL INTEGRATION NETWORK 

The method of characteristics has been applied extensively to 

solve two-dimensional flow-field problems.    In this case,   there are two 

characteristics which pass through any initial point.     The compatibility 

equations are ordinary differential equations which can   be written in 

finite difference form and used to solve for the flow variables at a new 

point.    Two basic networks have been utilized for carrying out the numerical 

integration.    In the first,   as explained by Ferri   u and shown in Figure 3 

point P, is located as the intersection of two characteristics from initial 
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points P.  and   P?,   respectively.    The flow variables at point P- are obtained 

by simultaneously solving the compatibility equations written along these 

characteristics.    Here,   compatibility equations along the streamline P, P. 

may be introduced as auxiliary conditions.     The second method shown in 

Figure 4 was originally proposed by Hartree.    This consists first of sel- 

ecting the point P. off the initial line and intersecting the characteristics 

through P- with the initial line at points P    and P_.    The flow properties 

at points P. and P_ are determined by interpolation and the finite difference 

forms of the bicharacteristic equation are used to solve for the flow vari- 

ables at point P..       Here again,   the streamline through P, can be supplied 

when more than two dependent variables are involved. 

Both methods described above for the two variable problem are 

essentially the same,  because regardless of how point P., is located,   the 

choice of characteristic directions through P. is not arbitrary.    However, 

this is not the case for problems involving more than two independent 

variables.    Indeed,   as was shown in Equation (49),  the generators 

of the characteristic cones in three-independent variables comprise a 

one-parameter family of curves through any point P.     Thus,   there is a 

certain degree of arbitrariness involved in choosing a basic finite differ- 

ence network for use in a multivar lable characteristic procedure. 

Before discussing some of the networks which have thus far 

been proposed,   it will first be useful to introduce the generalization of the 

two characteristic directions associated with any point P in two dimensions. 

For this purpose,   consider an arbitrary curve that acts as a source of 

disturbance in three-space,   (see Figure  5).    A characteristic    conoid is 

associated with each point on the curve in the manner indicated.    The 

envelope of all these conoids,which also contains the original curve, forms 

two distinct surfaces ( £f    and  £    ) which,   since they are comprised of 

bicharacteristics, are also characteristic.       Hence,   through any curve in 

three space,   there are two characteristic surfaces corresponding to the 

two characteristic lines through a point in two space.    The geometry 

involved in the three-dimensional method of characteristics has thus become 

evident.    Through e.ich point P in space,   the normal N to a characteristic 

surfact lies on the normal cone given by Equation    (45)  (see Figure 6). 
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The envelope of all such surfaces through P is just the characteristic conoid 

at P and is itself a characteristic surface.    The curves of contact between 

the characteristic conoid and the enveloping surfaces are the bicharacteristic 

curves.    Thus,   the characteristic conoid may be regarded as being generated 

by the bicharacteristic curves through P,   its vertex.    This characteristic 

conoid coincides with the Mach conoid at every point on its surface.    As shown 

in Figure 7,   the boundary of the Mach conoid is just the envelope of all the 

local infinitesimal Mach cones.    The characteristic conoid is thus everywhere 

tangent to a local Mach cone. 

The solution of flow field problems by the method of character- 

istics in more than two independent variables consists,   therefore,    of 

choosing from the infinity of directions available   a particular set of 

bicharacteristics or characteristic surfaces,  writing the equations devel- 

oped in Section   2 along thern in finite difference form and solving the 

resulting numerical equations simultaneously.    Various finite" difference 

networks have been proposed for accomplishing these   integrations.    The 
9   17 most important of the.  : have been discussed and compared previously.    ' 

Each of the proposed schemes are summarized here for ease of reference 

and finally evaluated from the standpoint of their applicability to finite-rate 

chemically reacting flow  field studies.    In ali of the procedures,  the char- 

acteristic surfaces and conoids discussed above are replaced by suitable 

average planes and cones.    The nomenclature used by Powell and Sauerwein 

is     repeated here. 

14 
Thornhill       originally proposed two integration schemes.    In the 

first,   termed the "tetrahedral bicharacteristic line network" (Figure 8),   the 

new point P    is located as the common intersection point of Mach cones from 
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each of three initial points P.,   P..,  and P~.    The lues P. P.,  P2 P. and 

P, P.   then represent numerical approximations to three bicharacteristics 

and the streamline from point P. P- to the initial plane provides a   fourth 

bicharacteristic direction.    The properties at P- are determined by inter- 

polation.    The equations developed in Section   2  written in finite difference 

form along these bicharacteristic directions are used to solve for the flow 

properties at the Point P  .    The main advantage of this network was the fact 

that the base points P.,   P_,  and P    remained fixed throughout the iteration 
i       c 9 

process.    However,  Sauerwein,     in attempting to apply the technique to non- 

steady flow probit.ns,   determined that it was numerically unstable.    The 

reason for this,   as shown in Figure 8,   is that the domain of dependence of the 

differential equations (the circle P. P? P_) is not contained within the domain 

of dependence of the difference equations (the trianglo P. P   P„) and the 

C-F-L stability condition as introduced in Section 3. 1     is continually vio- 

lated.    Sauerwein then proposed what he termed the "modified tetrahedral 

characteristic line network.'     In this network (Figure 9),   three points 

P     ,   P?-,   and P       representing the points of tangency of the circle in- 

scribed within the original triangle P  P  P    are chosen as new initial 

points.    The properties at points P]?»  P?,.  and P      are determined by 

interpolation and the method then follows the procedure described above 

for the unmodified network.    The C-F-L condition for the points P,-,. P?T> 

and P.    is seen to be satisfied and the technique was found to be stable. 

The second method proposed by  Thornhill is the "tetrahedral 

bicharacteristic surface network" (Figure 10).    Again,  three noncolinear 

points P.,   P?,  and P, are chosen in the initial plane.    Point P    is deter- 

mined as the mutual intersection point of the three average internal 

characteristic planes through lines P. P?,   P- P, and PP.    The Mach 

forecone from P. defines three bicharacteristic lines P.P,.,   P.P., P   P„ 
4 4    5       4    6      4    7 

as the lines of tangency between the cone and each of the original charac- 

teristic planes. The streamline P. P„ again furnishes the fourth bichar- 

acteristic direction.    The flow properties at the base points Pc,   P.,   P., 
5        6/ 

and P„ are determined by interpolation and the flow properties of point P 

are then solved for along the bicharacteristics as before.    This method and 

the modified method discussed above are essentially the same,  as   the 

bicharacteristics chosen run from the tangent points of the circle inscribed 

in an initial triangle to the new point at which the flow properties are desired. 
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Hence,   since the "modified" characteristic network led to a stable solution, 

it seems plausible to suspect that the present scheme would also be stable. 

Indeed,   such is the case, as was shown by Tsung in applying this technique 

to the simplified case of three-dimensional potential flow problems. 

A "network of intersections of reference planes with character- 
18 43 

istic surfaces" (Figure 11) as discussed first by Ferrari,      Sauer,       and 
44 

Ferri      considers two sets of orthogonal coordinate planes (e.g., y = constant 

and x = constant) and utilizes a two-dimensional characteristics network. 

The intersection of the two coordinate planes define lines P, P., and P_ P. K 12 3    4 
from which the integration proceeds.    Points P- and P, are located by a 

forward marching two-dimensional characteristics scheme whereby the 

characteristics are confined to ,* = constant planes.    Projections of the 

streamlines through points P,. and P, on to the X - constant planes locate 

points P_ and P_.    Lines P_ P_ and P, P_ then serve as two-dimensional 

streamlines which can be used as auxiliary conditions for determining the 

flow properties at points P, and P,.    The variations of properties in direc- 

tions across the reference planes x. = constant are obtained by using poly- 

nomial fits to evaluate the cross-derivative terms which appear   in the 

equations written along the lines P. P. and P_ P_ or the lines P, P,   and 

and P. P,.    In order to evaluate the cross-derivatives which occur in the 4    6 
equations,  data points must be given in planes y= constant for each step 

of the calculation.    Generally,  however,   the newly calculated points P^and 

P, wil1 not lie in the same $ - constant plane.    Interpolation or extrapolation 

to point Pq in the desired -j     = constant plane is thus required.    While 

the integration network leading to the new field points in this method does 
45 not consist of bicharacteristic curves,    Ferrari      has shown that the 

equations used are completely equivalent to the original differential equations 

and that the existence and uniqueness tests devised by Titt are also satisfied 

here.    Morretti,   et al      have,  in fact,  obtained practical results using this 

schäme.    It would appear that the reason Morretti was able to obtain stable 

results is that the points used as base points for the two-dimensional charac- 

teristics plus the points used to determine the cross-derivatives all lie out- 

side the Mach forecone from the new point.    Whenever flow conditions are 

such that the points used do not include the Mach forecone,  the procedure 

would probably be unstable because the C-F-L conditions would be continually 

violated.    Another disadvantage of this network is that interpolation must be 
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performed throughout the flow field in order to confine the newly calculated 

points to planes of  j-     = constant.    Usually,   linear interpolations are used 

and the over-all effects of these linear interpolations can appreciably affect 

the accuracy of the technique. 

A fifth technique which has had some practical application is 
21 

that proposed by Butler,      (Figure 12).    This procedure represents an 

extension of Hartree's method as described above for the two-independent 

variable problem.     Given the initial data plane,  a new point P-   is chosen 

in a new data plane.    The coordinates of P, are thus known exactly.    A 

first estimation of the flow variables at P- is made and four bicharacteristics 

(or one more than the minimum required) located in planes 90° to each other 

are passed back to the initial surface.    Linear combinations of the equations 

along these four bicharacteristics result in relations involving derivatives 

in the bicharacteristic directions only at the new point.      The streamline 

P, Pc from Pc provides another relation which is required for obtaining 
o    D b 

a complete solution.    T.»e flow properties at the base points P.,   P.,,   P,,   P., 

and P.  are determined by interpolation.       Butler and Talbot have succeeded 

in applying this technique to some simple two-dimensional unsteady flow 

problems.    A searching scheme was used to determine the nine points which 

were closest to the particular base point,   say P.,  being fit.    Then bivariate 

Lagrange interpolation through these nine points was used to determine the 

flow properties at P  .    However,   the procedure was found to be stable only 

when all of the base points associated with a given calculation were confined 

within the same nine-point fit,  and hence only when the C-F-L'condition was 

satisfied.    If one set of points is used to fit a given base point,  while another 

set of points is used to fit the remaining base points,   the procedure was found 

to be unstable.    This can probably be traced to the fact that not all the points 

in the domain of dependence of the difference equation are treated with equal 

weight and hence tha C-F-L condition is in principle violated 

Other methods have been proposed for which no practical three- 

dimensional results have as yet been obtained.    Holt,       using the work of 

Coburn and Dolph,       introduced a network which Fowell called a prismatic 

network of characteristic surfaces,   (see Figure 13).    This method,  which 
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is similar to the network of intersection of reference planes with 

characteristic surfaces was devised because of the misgivings Coburn 

and Dolph had regarding the use of non-bicharacteristic directions along 

which the integrations were to be performed.    As mentioned above, 
45 however,   Ferrari      later showed that this objection was clearly unjustified. 

The method consists of choosing the two bicharacteristic directions   P,P,- 

and P-P. as two coordinate directions at a general point.    The third 
3   5 

direction is provided by the line P.P2 in the initial plane.    In general,  this 

method requires that the flow properties be known on some surface   P^P^P, 

other than the initial surface (e. g. ,  plane of symmetry,  etc. ) and this 

would seem to limit its application. 

These are essentially all of the basic characteristic nets which 

have thus far been advanced.    Slight variations of the method of intersection 

of reference planes and characteristic surfaces have been discussed by 
46 Sauer and Shaetz      (called by them the method of "near characteristics") 

24 for unsteady flow and by Kackova and Cuskin      for steady flow.    These 

methods would all seem to have the same advantages and disadvantages oi 

the Ferrari,  Sauer,   Ferri technique described above. 

All of the above integration procedures are seen to require some 

sort of interpolation at the base of the bicharacteristics in the initial data 

surface.    The "tetrahedral bicharacteristic line network" which sought to 

avoid this problem was found to be unstable.    Also,   for every method, 

interpolations are required at the base of the streamline in the initial plane. 

A critical point to be considered in a practical application of any of the 

above techniques then is how to keep the number of interpolations to a 

minimum.    This is necessary both from the point of view of conserving 

machine time and obtaining accurate representations of flow fields.    When 

nonequilibrium chemistry is included,   this point becomes even mere salient. 

Here a total number of   A/S~£ +A/y      interpolations would be necessary for 

the compositions and energies at the base of each streamline.    However, 
35 

Curtis       has shown that interpolations for species which vary rapidly across 

the .shock layer are a constant source of trouble leading to oscillations in 

species conciliations along streamlines.    If possible,   such interpolations 

should therefore be avoided. 
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Other considerations should also be taken into account when 

finite-rate calculations are desired.    First,  experience has shown that 

the concentration gradients are usually much steeper along streamlines 

than are the gradients in other flow quantities.    Close control of integration 

step size along streamlines is thus required in order to obtain reasonably 
28 34 correct concentrations.    Second, Sedney      and Wood      et.  al.  have shown 

that the use of entropy as a dependent variable leads to large errors and 

should be avoided.    The energy equation as developed in Paragraph 2. 2 has 

avoided this problem by using temperature as the dependent variable. 

Third,   since any finite-rate chemistry calculations require considerable 

machine run time per point,   a method of reducing the number of points 

required to obtain an adequate flow field representation is desired.    Probably 

the best way to reduce the number of calculations is to keep the mesh spacing 

as uniform as possible. 

When the integration techniques discussed above are assessed 

as to their applicability to finite-rate chemistry calculations,   the outlook for 

any of the networks is not very promising.    All of the schemes involve inter- 

polations for concentrations in the initial plane.    The network of intersections 

of reference planes with characteristic surfaces would also involve inter- 

polations on the concentrations throughout the flow field.    In fact,   in 

order to control mesh size spacings by either adding or dropping points 

all of the methods would again require interpolations throughout the entire 

flow field.    The methods used to obtain the coordinates of the new point 

are generally quite complex in all cases except the pentahedral bicharacter- 

iatic line network where the location of the new point is initially given. 

Since the run times involved in finite-rate chemistry calculations are already 

long,   such complicated procedures shr  ild in general be avoided. 

The integration network described here seeks to avoid the 

complicated geometry and interpolation problems discussed above.    It 

represents an extension and modification of the two-variable scheme 
35 proposed by Curtis      and essentially combines the simplicity of the 

pentahedral network with the advantages of 3. direct marching technique. 
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It may be termed a "network of intersections of streamlines with reference 

planes" since the basic integration coordinate is along the streamline (or 

particle lines in unsteady flow) and new points are located on successive 

reference planes or surfaces. 

The numerical procedure is illustrated for a single field point 

calculation in Figure  14.   All the flow quantities composition, 

pressure,  flow angle,  velocity,  etc.  are available at initial data points 

surrounding point Pi , in the non characteristic initial plane t = *K .    A new 

plane at which the data is required is fixed at *  = X^+ AX.    The new point 

P? is first located as the intersection of the streamline from P. with the 

plane x   =t.+A%.    Four bicharacteristics positioned 90° apart on the Mach 

forecone from P- (Equation 54) are then passed back to the initial 

plane * = X^   .    The flow quantities at the base points P.,   P   ,   P    and P, 

are determined from bivariate surface fitting techniques,   remembering 

that for stability the region fit must include the domain of dependence of 

the differential equations.    Actually,   in practice the surface fit for each 

flow variable is determined only on~e during the iteration process.    Thus, 

the interpolations become merely a matter of evaluating known polynomial 

expressions.    The velocity o ,  temperature   T .   concentrations    Yt    and 

vibrational energies €•    at P    are found by integrating Equations (56) 

through (59) numerically along the streamline P. P      Four compatibility 

equations (71) written in finite difference form along the four 

bicharacteristics P^P?«   ^A^Z'   ^5 ^2 anc* ^£^2 Vie^d appropriate average 

values of the remaining flow quantities pressure p ,  and flow angles 

6 and   if   .    This procedure is then iterated to convergence of the flow 

properties at point P?. 
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Perhaps the only disadvantage of "the network of intersections of 

streamlines and reference planes" is that the base points of the bicharac- 

teristics tend to drift around in the initial plane during the iteration cycle. 

However,   the technique discussed above whereby the surface fitting poly- 

nomials are   determined first before any calculations are performed would 

seem to solve this problem.    Now the interpolations are relegated to merely 

solving given polynomial expressions and the extra computational time involved 

is relatively small.    A few less obvious benefits are gained by using this 

technique.    In steady flow,  the streamline patterns are easily traced -both 

along the body and throughout the flow field.    The output data is also more 

easily handled since the flow properties are usually known in planes orthogonal 

to rhe body axis,   rather than at random nondescript points throughout the flow 

field. 

3. 3 PRACTICAL NUMERICAL INTEGRATION PROCEDURE 

The preceding considerations illustrate to some extent the 

network to be used for calculating a point within a flow field.    However,  in 

order to calculate an entire flow problem certain boundary points must  be 

included.    In general,  for the class of problems being discussed here, 

points that lie on a body surface and shock surface will be required.    In 

the discussion that follows the essentials of the integration process will be 

included for each of these three basic unit processes.    The relationship 

which exists between the three different types of points and the initial 

surface is shown in Figure  15. 
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3.3. 1 Starting Procedure 

The mesh points on the initial, as well as succeeding, data planes 

are systematized in terms of rays extending out from the body. Each ray on 

a plane at    *    -  X is labeled    /?      and each point on the ray   I     ,   so a 

typical point is given by    P^n      .    Points    Pfn     correspond to body points and 

points   PMV      correspond to shock points where   M     - max   i     on ray   >7 

The >>.U.3      -coordinate system will generally be chosen such that the body 

axi.-  coincides with the   X    -axis.    A new plane    X-  Xfr +-A.?<.    is located first. 

A x    is deterrr.^i.ed by the C-F-L stability condition    which requires that 

where   A£   is the maximum distance allowed along a^y streamline,   An 

is usually the minimum mesh spacing and o  and  a, are the minimum 

velocity and maximum speed of sound respectively.    It should be noted 

that a searching procedure is generally required among the points in the 

data plane in order that Equation (72) be satisfied.    However,  this search 
can generally be confined to regions of the flow field which are a priori 

known to contain relative maxima and minima of the desired flow variables 

(planes of symmetry,  etc.).    Given a point P in the   data    plane,  Equation (72) 

insures that the Mach forecone from a point P_ on the streamline through 

P. is contained within the eight initial data points immediately surrounding 

P..    (See Figure  14)   The nine points shown determine the region in the 

initial plane over which interpolation surfaces are fitted.    If a larger step 

size  Ag     is allowed,  a correspondingly larger region in the initial data 

surface must be fitted (with the resulting larger truncation errors). 

3. 3. 2 Field Point Routine 

I The solution at a field point involves essentially six separate 

processes:    (1) the surface fits to the flow variables in a region surrounding 
■;■ 

|     . the initial point are determined,    (2)   a new field point is located, 
I 

(3) bicharacteristic lines leading from the new point back to the initial plane 

are located,    (4) the flow quantities at these base points are obtained using 

the fits developed in step 1,    (5) the flow properties at the new point are 

determined to a first approximation,  and   (6) the flow properties are iterated 

to convergence to second-order in the step bize. 
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Step 1 

Given an initial Field point P.  (Figure 14) nine points including 

P. are fit with an exact interpolating polynomial for each function   <?• 

required in the compatibility equation written along the bicharacteristics. 

For the function Gt-   it will probably be most convenient to use the pressure 

pi,  flow angles 9 and  ^    , Mach angle ß ,  the function t   and the product 

pq^   .    In this way computation time can be reduced since the compat- 

ibility equation involves only these functions.    Compared to the concentration 

Y(    >   each function   &       varies rather slowly throughout the shock layer. 

As mentioned above,  this fact represents a distinct advantage of the 

proposed scheme. 

The coefficients   Af;,   A2± ,   A3;  ,  etc.  to be used in the inter- 

polation for the function 0t    are determined by solving the set of equations 

(73) 
+ A7ißi¥jt + A8;h\fi +A9;t/¥f j-1,2,-,9 

written for the nine initial points   P (x, tfj, Z,)    . 

Step 2 

The new field point P? is located as the intersection point of 

the streamline from P. with the given plane   *> -   k + &%   as 

A2  -   xf *■ Ax (74) 

ft = cf, + s<.»eds (75) 

h ' h * CO50t5tn tdS (76) 
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where 

dS 
Ax 

cos &1 cos <j>i 

is the distance along the streamline. 

(77) 

If the new plane is not perpendicular to the 2 -axis,  Equations 

(74)-(77)  along with the equation of the plane   locate the coordinates of the 

new field point. 

Step 3 

With the new field point P    located,   the first approximation for 

the flow properties there are required.    Since no calculated properties are 

available at P   ,   they must be estimated initially.    A pressure gradient 
P -P 

K"   ~  -i.—L    is assumed at P. while the remaining flow properties at P? 

are taken equal to their corresponding values at the base point P.. 

The compatibility equation (71) corresponding to the Mach 

forecone from P? involves only three dependent variables (p , 9  , <f>   ). 

It would be reasonable to expect that only three bicharacteristic lines 

through P- would be necessary to solve for these three unknowns. 

However,  while at least three bicharacteristics are indeed necessary,   it 

has been found that more are required in order to give sufficient accuracy 

to the flow quantities at P?.    The reason for this,as will be discussed in 

more detail below,   is that in writing Equation (71) in finite difference 

form along the bicharacteristics,certain higher order terms are neglected. 

Since the iteration scheme to be described in Step 5 below yields values 

accurate to second order in the step size,   in general,  these terms are 

not negligible. 

Four bicharacteristics through the new point P, are chosen. 

The base points P..,  P   ,   P   ,  P.  in the initial plane are located by solving 

Equation (54) for four values of the parametric angle   £    = Jj  Jr , 

IT  and  £—   .    Typically when the initial plane is given by £ - Xk,  point  P , 

( t, - 3,  4,  5,  6) is located from the following equations, 

xk (78) 

yt   * </z~(s*'7&2 cosß^ + sinß2 cos 9Z cos <$■ ) dLt (79) 
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h" }z" (coi ßtcos e^sin^ - sin/32\sln\\i2sin92c ^sS- -cos <p2sln <5;])^Z-; (ö0) 

where 

^ . ___________ _ * _.___—    . / U 1 \ 
1     c°Sßi cos &z cos<fiz - scnj32 [sen62cos <fz cos6U + sin ipgSin 6^ ]'     '" 

is the distance along the respective bicharacteristic. 

Step 4 

The next step is to determine the flow properties at the base 

points of the bicharacteristics.    The flow properties at each base point can 

be determined by substituting its coordinates into the interpolation formulae 

derived in Step 1.    A new estimate of the parametric angle <_f       is also 

required at the base of each bicharacteristic.    Equations (78) - (81) above 

with coefficients evaluated at each base point respectively,  furnish this new 

estimate.    The actual   <£•   used in the computations along each bicharacteristic 

then represents an average between tha: at point P_ and the associated 

base point. 

Step 5 

The compatibility equations (56),   (57),   (58),   (59) and (71) are 

written in finite difference form,   and used to find first estimates to the 

flow quantities at Point P?.    Equation (71) is put in finite difference form 

by substituting the following approximate expressions for the derivatives 

of a function f in the bicharacteristic direction. 

•^  ~   fi " fi I * 3 ¥ _r a (82) 
3L AL C       '    '    ' K     ' 

where 

AL   -   [fc,-*j'wy,-s,.)*--- <},-*)']* (83) 

As a result,  the following linear equations for the variables p , &   and f 

occur along each bicha -acteristic P  P9    t,   ' 3, ■ • •, 6 
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%¥i<4-''J + C*s6i(6t>*(i) - cose, sin 6t(J2-fr) 
S3*?' (84) 

The only unknowns in Equation (84) are the quantities  pt   ,   Og     and   <p2 

at the new point P  .    One would thus expect that Equation    (84) written 

along three bicharacteristics could be solved simultaneously for the 

unknowns at P,.    However,  before the flow properties at point P, can be 

obtained, the derivatives-^-    in the non-characteristic direction   rV     must 
0Ar 

be evaluated numerically.    The existence of derivatives in the direction 

normal to a bicharacteristic represents   the major difference between 

two-variable and three-variable method of characteristics.    In two- 

independent variables,   the compatibility equations written along the 

characteristics are ordinary differential equations whose difference 

analogs can be solved immediately for the flow quantities at the new point. 

In this sense the compatibility equations are   weaker for three-variable 

problems than the corresponding characteristic equations in two-variable 

problems.    On the other hand,  as has been pointed out previously,  there 

are an infinite set of such relations available in the three-variable problem. 
21 Butler      has utilized some of these extra relations in order to eliminate 

the derivatives in the non-bicharacteristic direction at the unknown point. 

Here, extra relations are introduced in order to obtain more accurate 

average flow properties at the new point.    The two techniques should be 

essentially the same inasmuch as both yield improved approximations to 

the derivatives in a non-bicharacteristic direction. 

Considering any three base points,  say P.,  P. and P-, the 

partial derivatives can be evaluated from 

where the  zß.    ,  etc.  are obtained from equations of the form 

£& riQ s$6 

and the .  etc.  are obtained from the coordinate transformation (68) as 
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    * sin & cos u> sin £ - cos6 sin d/ (87) 
JA/ r T 

-£%-  « - sir? S cos6 (88) 

<?* 
-r—   ■  sin 9 sm f sm6 + cosScosf (89) 

Note that in Equation (86),   0      is treated as an unknown so that when (85) is 

combined with (84) both the right and left hand side of (84) contain the 
d W unknowns   9     and    w       .    The procedure for obtaining    ~TÄ7~      is similar. 

With the coefficients thus evaluated,   the three linear equations of 

the form (84) written along the bicharacteristics P^P?»  P4P? an<* pcP? 

can be solved simultaneously to yield first approximations to the flow 

variables p , 0   and   V   (say p^\ &J°, i/jj° ) at point P^.    Three more 

bicharacteristics (P_P.,  P,PC and P_P,) are then chosen and using the 
2   4       2   5 2   6 b 

technique described above another estimate for the flow quantities  p , 9 

and f  at P    ( pji},   9"y ,   <pji}       ) is determined.    Finally,  the first 

approximation to the pressure at P~ is given by 

Pz =i(pr+p^) (90) 

Similarly,  the average values of   &   and   </^   are formed.    It should be 

noted here that more sets of bicharacteristics can be located and still more 

first estimates to the flow properties at P~ determined.    Then Equation   (90) 

would represent an average over all such estimates.    In general,  however, 

if four bicharacteristics are positioned evenly around the Mach forecone 

from P  ,the addition of any other estimates at P? would probably exceed 

the overall accuracy of the remainder of the scheme and the final results 

would be changed only slightly. 

The compatibility equations (58) - (59) along the streamline PjP? 

are integrated to yield the remaining flow quantities at point P?.    In general 

for nonequilibrium flow,  the temperature       ,   concentrations/V and 

yibrational energies £     ,  vary much more rapidly from point P. 
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to point P? than do the pressure p , and flow angles 8 and   <p  .    Hence, 

the equations along the streamline cannot usually be replaced by their 

first differences and integrated directly as was done above for the 
34 35 bicharacteristic equations.    Following Wood et.  al.       and Curtis     ,   the 

pressure is assumed to vary linearly along the streamline P  P? 

and a fourth-order Runge-Kutta technique is used to integrate the given 

coupled ordinary differential equations in several steps along P.P,. 

Although the Runge-Kutta method is generally satisfactory,  for many casr s 

of high-temperature air flows (e.g.  conditions where both fast and slow 

chemical rates are present in the same region) it fails to prevent 

instabilities from arising.    Treanor has recently developed an algorithm 

designed especially for handling these so-called "stiff" equations which 

often occur in reacting and relaxing flows. The method which is similar 

to the Runge-Kutta technique includes terms which are fifth order in the 

integration step size.    The details are given in Reference 47 and will not be 

repeated here.    However,  it should be emphasized that the calculation 

time per integration step is generally quite long because several rather 

complicated derivatives must be evaluated. 

Step 6 

Having determined a first approximation to the flow properties 

at a new field point the last step is to utilize an iteration process which 

determines the position of the new point and the flow properties there. 

The iteration process employed here is similar to the "modified Euler 
48 method" or "Huen's first method"      whereby steps 2 through 5 are 

repeated using average values of the flow quantities.    Along the streamline 

the coefficients involving 8f   and <^f   are replaced by average values of the 

following form 

Sin*,™* {(jL»O,*Mn0M
<H-n) (91) 

wherever they occur in Equations (74),   (75),  (76) and (77).    Here,  the 

superscript     refers to the current iteration cycle.    Similarly,   in Equation 

(78) through (81) the coefficients defining the bicharacteristic directions are 

supplanted by appropriate average values.    As an example,  Equation (79) 

now becomes 



(n)        1 i    ■     n(r>-i) *("-*) a m-f) si <n-t) o 
I/,**      sf l5'"0!       cos/3*     J-hsm/52      

Jco$6z      'cosb0i 

+ s*/>&i        cas ft     J + 3tnpi       cos 6^        cos&i       /dli 

The coefficients of ( p   - p  ),   (0d-G:),   ( *p2 - ^) and ALC    in the compatib- 

ility Equation   (84)   are also replaced by the average of their values at P_ 

and   Pf    respectively. 

The iteration cycles may be continued until     pg"n   = pj'**'    , 

&£n) -   &g(n~f)   >       <P2
in>    =    p2

<n'° , etc.  within the prescribed limits. 

Usually it is only necessary to test the convergence on the pressure   p   , 

since experience here and in the two variable problems have indicated that 

whenever p has converged the remaining flow quantities have converged 

also. 

Using f.he modified Euler integration scheme described above 

along with the averaging technique presented in Step 4,  the truncation 

error is third-order in the step size; that is,  the procedure is accurate to 

second order in the step size as is the case with two-variable character- 

istics.    When the averaging discussed in Step 4 is not included,  the process 

is probably limited to     first-order in the step size through ihe assumption 

that the derivatives ~— ,   ——    and  ——    as given by Equation (85) are 

constant over the network.    Thus,  the addition of an extra bicharacteristic 

relation is seen to be essential in order to achieve the desired accuracy, 
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3.3.3 Body Point Routine 

Calculation of a point on the body surface involves essentially 

the same six steps which were necessary for a successful field point 

routine.    The body surface will be assumed to be given by 

6 (x.f.ß)  -° (93) 

B   represents either a known function or a surface fitting element in the 

region of the body point being calculated.    In this way,   rather general body 

shapes and motions can be accounted for.    The geometry of a typical body 

point calculation is shown in Figure 16, 

Step 1 

The first step of the body point routine is exactly the same as 

that for the field point procedure.    Nine initial points including eight nearby 

the initial body point P  ,  are fit with interpolating surface elements of the 

form of Equation (73) for each of the variables p    ,  &   , p   ,^   ,  f 

and pQ      .    Note(from Figure 16,that of the eight points chosen,only two are 

body points,   the remaining six being field points. 

Step 2 

The coordinates of the new body point are obtained as the inter- 

section of a plane through P. formed by the body unit normal ( n.  , *i   , n.  ) 

and the unit tangent velocity (-r- , — , —- ) vector at P   with the body surface 

(1) and the given plane  X^    =   *. * A x,    Since the normal plane is 

(A/ xS) ■ dl = COS 9 cos i/r     s/n &    Cas & SM ~\jf .dl 
(94) 

This leads to simultaneous solution of the equations 

8(*>y>3) ** (95) 
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PORTION OF BODY SURFACE 

INITIAL DATA 
SURFACE 

STREAMLINE CONFINED TO BODY SURFACE 

(§-  FIELD POINTS 
• - BODY POINTS 
X- BICHARACTERISTIC BASE POINTS 

Fiaure 16 BODY POINT NETWORK - THREE INDEPENDENT VARIABLES 
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and 

[(/?,), cos0, cos4>, - (*,;, cos 9, stn<t>,]{y-yt) 

4 fnj, sine, - (/72 ), COS 6, cos ft] a -/, j (96> 

- + [(ns ),sis>0t - (nt)f cose, stn fy ] (zg - *,) 

The solution defines the body point P    (  X  ,   tjz, }z ).    Equations (95) and (96) 

can be solved by using the second order Newton-Raphson algorithm with 

if**- </f f  and j.ia)- f1,  serving as initial guesses to the coordinates of 

point P,. 

Step 3 

As in the case of the field point network, most flow quantities 

at the new body point P    are initially taken equal to their respective values 

at point P  .    The initial guess for pressure will again be given by   Pz   -P. 

( Kf I )   where  K    is a known gradient. 

Bicharacteristic lines leading from point P_ back to the initial 

plane are determined next.    Three bicharacteristics will generally be 

required here in order to obtain sufficient accuracy in the calculations at 

P_.    Two bicharacteristic elements are located in the tangent plane to the 

body surface at P? and the third in the normal plane containing the stream- 

line P.Pr  Equations (78) - (81) serve to define the base points 

P      ( i = 3,  4,  5) when  S. at point P, is known.    Since the streamline P,P, 

lies on the body surface,  the p?rametric angle 8  ,  defining the bicharacter- 

istic in the normal direction,is given by the scalar product of the unit 

normal vector ( n , n , n ) and the coordinate vector n (Equation 90) 

shown in Figure  1. 

6j  ~ cos-^^^^cnB^os^i-in^cose^in^^t^e^in^ (97) 
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Then, 

6\s   ~S9±i (98) 

define the remaining two bicharacteristic directions through the new body 

point P2. 

Step 4 

The flow quantities at the base points are determined from the 

interpolation surface fits found in Step 1.    This step is exactly the same 

as Step 4 in the field point procedure. 

Step 5 

The next step is the determination of the flow properties at 

point P.,. For the body point, this involves the solution of two compa 

equations together with the boundary condition of flow tangency at P 
2 

Choosing two of the three bicharacteristics located in Step 3 (say P-.P-, and 
3 5   l 

P.P  ),   the derivatives    ^y      which appear in the compatibility equations 

along each bicharacteristic must be computed.    These derivatives are 

evaluated in much the same manner as that used for the field point solution. 

Now,  however,   in evaluating    ^    etc.   in Equation (86) the initial body- 

point P.   is used as one of the base points. 

The compatibility equation    (84) along P3P2 and P4P? are 

two equations in three unknowns p ,  62  and   ^   .    The pressure p      is 

eliminated from each to yield one equation relating   &2  and   ip2 .    The 

conditions of flow ta.igency provides the additional relation between    0      and 

!/-z    as 

(r>,)2 cos e2 cos <J>3 + (nz)z sen 62 + (ns)2 cos 0g sin i//2 =0 (99) 

Using a bivariate Newton-Raphson procedure these two equations can be 

solved for initial estimates tc the flow angles at P?.    The pressure 

is then found from one of the original compatibility equations.    Repeating 

the above for bicharacteristics P  P? and P,.P    another estimate for 

0 ,   ifj   and p   at P2 is obtained.    The final first approximation to the 

pressure and flow angles at P? is represented by the average of these two 

solutions. 
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The remaining flow properties at P_ are obtained by integrating 

the compatibility equations (57) through (59) along the streamline in the 

same manner as was used in the field point routine. 

Step 6 

Using the "modified Euler process" described in Step 6 of the 

field point procedure, Steps 2 through 5 are iterated to convergence.    The 

location and properties of point P? are then stored and the computation 

continued to the next point.    This completes the body point solution for 

steady flow. 
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3.3.4 Shock Point Routine 

The shock point process is the most complex of the three basic 

unit processes required,  although it follows the same basic pattern as has 

already been established.    Now,  however,  not only must the new shock 

point be located and the composition and flow properties there calculated, 

but the orientation of the shock surface at the new point must also be 

determined.    The geometry involved in the shock point solution is shown 

in Figure  17. 

Step 1 

This step is exactly the same as Step 1 of the body point proced- 

ure with the body points being replaced by three shock points.    The form 

of surface fit chosen and the flow variables fitted are the same as those 

given in Step 1 of the field point procedure. 

Step 2 

Since,  unlike the body,  the location of the shock is not known, 

a point on the shock will be located as '..he point of intersection of a line 

tangent to the shock surface through the initial shock point P    and the 

plane % - Xf+Ax.    The tangent line lies in the plane formed by the shock 

normal vector A/g ,  and the velocity vector   Q. .    Its direction is,therefore, 

chosen as that of the velocity component tangent to the shock surface from 

the point P    and is given by 

With  rt      established,   the position of the new shock point is 

xz - r, + ax. (loi) 

fc c * + fFÜJ-J* (102) 

fc-**77£r/* (103) 
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Figure 17 SHOCK POINT NETWORK - THREE INDEPENDENT VARIABLES 

61 



Step 3 

The flow conditions behind the shock at the new shock point P^ 

are determined by solving the shock wave equations (Rankine-Hugoniot 

equations) using given values of the normal   Ms    and the "free stream" 

conditions at P,.    The normal  /V,   is initially chosen as 

\ '   \  +><<** (104 ) 

where     Kf     is a known gradient based upon the two previous shock points. 
— ^™SL — 

'   K; -   ~ jy,    )     The flow properties incident to the shock 9      , P      , /o        , 

(€j    )     and    (P" ■    )    are either known or they can be determined by inter- 

polation between the closest known points in the incident stream.    (In this.- 

way,  both internal and external shock wave surfaces may be handled by using 

exactly the same technique. )   Quantities ahead of and behind the shock are 

t'enoted by a plus or minus sign,   respectively.    Letting the subscripts  N 

and    T    denote the normal and tangential velocity components,   respectively, 

the shock equations can be written in the form 

(105) 

(106) 

h + i U      ~- h-+U«~ (107) 

p+ +/>+ f„f    = p. +P- f«_ 

'A/+ 

- '■*ifj 
- a     siricr- 

=■ q+   COS a- 

- 
IT. 

= rt_ 

- eJ- 

(108) 

(109) 

fr+       =    fr. (n°) 

n+   =   n_ (in) 

€J +       s      <V- (112) 
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where a-  is the shock wave angle . 

In the general case, these equations must be solved numerically 

for conditions behind the shock.    To this end,   given the shock wave angle 

c at the point P7, the conditions across the shock can be found using the 
39 iterative method of Garr and Marrone     .    Here, the pressure p2_ is 

initially assumed and equations (105) - (107) above are solved for the remaining 

unknowns p2_, (qN  \      and   h2_ .    The process is then iterated by varying 

the pressure until the total enthalpy behind the shock matches that ahead of 

the shock within a specified relative error.    The flow velocity components 

are next calculated from the known values of   Ns      and    QN_    as 

«*-   -   "* +  *  %(?«-   -f„J <113> 

«"i-   ~"i+ + \(f#- -f«+) (115) 

Then,  the flow angles (&. )_ and { t^2 )_  are given by 

(0tU -   Un-'f ~===^i (116) 

W.B 'a"~'(%l) (117) 

Thus,  all flow properties behind the shock wave are known at the new shock 

point P?. 

Step 4 

Next,  the locations of three bicharacteristics leading from the 

new shock point P? back to the initial plane A =Xh are desired.    In a 

similar manner to that used in the body point solution,  two of the bicharacter- 

istics are selected to lie in the shock surface,  while the third is chosen to 

intersect the initial surface at a point in the field.    The base points P, 

and P. on the shock surface in the initial plane are determined as the 

points of intersection ol the Mach cone (Equation (48) with 
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the shock surface and the initial plane 7C - X-k .To this end, the element 

P/P,Pg (see Figure 17) of the shock surface in the initial plane is fitted 

with a quadratic in a and A as 

y , A}* -h 6++ D (11«) 

Then,  equations (118) and (48) yield the coordinates of the two base points 

P, and P..    The parametric angles £c   defining the bicharacteristics ^^P? 

and P4P? can be obtained from Equation (50) with coefficients evaluated at 

P? and 

4lt -{(t.t-^f*(ijz'<Ji)^(^-fi)Z)%   i'*¥   (119) 

Then, a third bicharacteristic is located midway between P,P? and P4P? 

on the Mach forecone by taking 

St,hlh. (120) 

at point P? and solving Equation (54) for the coordinates   y  , » . 

Step 5 

This step is exactly the same as Step 4 in the field and body 

point procedures.    Given the coordinates of base points P,,  P. and P 

the function surface fits evaluated in Step 1 can be used tc determine the 

base point flow properties. 

Step 6 

In Step 3,  all flow quantities behind the shock at point P? were 

determined by solving the Rankine-Hugoniot equations.    These flow proper• 

ties must also satisfy the compatibility equations written along the 

bicharacteristics P_P?J  P4P? and PrP? Wfien the shock wave is correctly 

located and oriented at P?.    This fact can be used to develop an iteration 

scheme to converge the position and orientation of the shock wave element 

through P?. 
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Since conditions behind the shock at any point cannot be multi- 

valued, whenever one flow property is correct the remaining properties 

must be right also.    Consider that the flow angles (Sz )_ and ( &g )_   as 

determined in Step 3 above,are correct.    Then,  each of the three compat- 

ibility equations written along the bicharacteristica P_P_,  P4P2 
anc* PcP? 

can be solved to yield three values of the pressure  pt<j>   at P,.    The 

partial derivatives ^p which occur in the  compatibility equations are 

evaluated here in the same manner as was used in the field and body point 

procedures.    (Equations (85) - (89).) 

Comparing the average pressure p  *  as obtained from the 

compatibility equations with the pressure p     from the shock relations,  a 

new estimate to the shock normal   A^   at P? can be determined by defining 

e  > = p. (n) +<n\ 
z-     -Pz- (121) 

Then, new values of the direction cosines of the normal    Ns 

selected by linear interpolation as 

are 

N. 
(n+1) 

« 
(n-t)   (n) e "s 

(n)   (n-/)\ V« e<»>_e<n-<> 
(122) 

and 

'V*'; ■ ("> in-f)e(n>- Ns*Vn''>)/(e<n)-Sn-'}) (123) 

while, 

AL<"+* -  (f.O-Ns'-Ns')V* 
7* 

svJ (124) 

Again,  th« superscript (n) denotes the iteration cycle.    This procedure is 

repeated i.   an iteration process using average flow properties and coeffic- 

ients to locate the new shock point and the bicharacteristic base points as 

in the field and body networks.    Average values are also used for the 

coefficients of the respective compatibility equations associated with the 

bicharacteristics P^P?'  ^4^2 ant* ^5^2"    lteration continues until 
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fr--ft-" « Test Constant (125) 

at which time the position and orientation of the shock wave are found that 

yield flow properties satisfying the compatibility equations to the desired 

degree of accuracy.    This completes the shock point solution. 

3.4 SIMPLIFIED FLOW MODELS 

The methods derived above apply to three dimensional steady 

gas flows in which chemical reactions and vibrational relaxations occur at 
35 finite rates.    Experience with finite rate programs      indicates that even 

for calculations involving two independent variables the full equations are 

apt to require long machine times - especially in near equilibrium flow 

situations.    Therefore,   it may not always be desirable or even necessary 

to consider the full nonequilibrium flow equations.    Instead,  following 
49 Curtis     ,  appropiiate simplifications of the chemistry may be introduced, 

Specifically,   three sets of simplifying assumptions relative to the chemistry 

and the thermodynamics of the gas flow are presented here.    Each one is 

listed below,  along with the procedures required for carrying it out. 
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3. 4. 1 Ideal Gas Model 

In this ca.se,  all chemical production terms are equated to zero 

and the specific heat C    is constant corresponding to no excitation of the 

vibrational   degrees of freedom.    Therefore,   the variables and terms 

involving them may be eliminated from all preceding equations:  NS, NV   t 

?"'• ,   £■   ,  fty.   ,   Q;   and    d~     .    The speed of sound is computed from 

CL « -\^~ (126) 

and for steady flow the velocity is given by 

{f*A   --   (H^-CpT) (127) 

3.4.2 Frozen - Inhomogeneous Model 

The frozen-inhomogeneous model corresponds to the case where 

the gas composition along streamlines (or particle paths) has frozen in a 

partially dissociated state.    The composition does vary across streamlines 

however,  and thus throughout the shock layer the gaseous mixture is 

inhomogeneous.    Assuming vibrational equilibrium, frozen flows can be 

calculated by setting the following terms equal to zero in the compatibility 

equations:    A/K ,    Z?^      , Q    ,   e-      and T'.    The frozen specific heat C 

is obtained from Equation (28) with  j(/f    - tf  and the frozen speed of 

sound is again given by (34).    The netword of intersections of streamlines 

and reference planes is seen to be suitable for calculating frozen flows 

because the concentrations of the various species are forced to remain 

constant along each streamline. 

3.4.3 Equilibrium Model 

The equilibrium model assumes that local thermochemical 

equilibrium will be established at every point in the flow field.    Again, 

Rv   ,   £j     ,   A/V   ,   <3L     ,    yt       and t   are set equal to zero in the 

compatibility equations.    Two distinct approaches are possible here. 

First,   the temperature,   density and speed of sound could oe determined 

from polynomial fits       or special curve fits       of tabulated air data. 
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In this case, the equilibrium rather than the froze" speed of sound is used. 

Knowing the pressure and temperature at each point in the field the 

equilibrium concentrations can be determined uniquely.    A second technique 

would be to use an iterative method to solve the full coupled equilibrium 
51 

equations at every point in a manner similar to that used by Boyer 

While the latter scheme is more accurate, the first method would involve 

far less computational time and should probably be used in any multi- 

dimensional characteristics program.    The accuracy of the approximate 

method can generally be held within 1% which is sufficient for almost all 

practical purposes. 

3. 5 INITIAL VALUE SURFACE 

The body point,  field point and shock point solutions described 

above can be used as building blocks from which the complete flow field can 

be constructed.    However,  before the method of characteristics can be 

utilized to solve such flows,  an initial value surface on which the flow 

properties are completely specified must be provided.    In many cases, 

obtaining these starting values is not a simple problem.    In the discussion 

that follows several possible procedures which provide the required 

starting regions for rather specific problems are discussed. 

In the case of a completely general three-dimensional body,  a 

plane of inputs along which the flow is initially supersonic is required. 

Unfortunately,   since the necessary data will in general be asymmetric ,   a 

method for obtaining inputs in this general case does not currently exist. 

Consequently,   more specialized solutions must be attempted.    One such 

specialization consists in solving the flow field in the vicinity of a spherically- 

capped body at angle-of-attack.    In this case,   initial data, in a plane normal to 

the flow direction is axisymmetric and may be provided    / using any of the 

well-known axisymmetric-blunt body solutions.    Among these,  either the 
52 39 direct method using integral relations      or an iterated inverse method 

would yield initial data which is  sufficiently accurate for continuing the 

solution using the method of characteristics.     The only restriction to such an 

approach is that for the angles of attack considered,   the body sonic point on 

the compression side of the body must be located on the spherical nose. 
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Certain three-dimensional,  steady blunt body flows may also be 

solved by treating them as limiting solutions in time of a properly posed 

unsteady flow problem.    These methods.which have recently been advanced 
9    53 in the literature   '       .consist first of moving from a known or attainable 

steady flow solution to another desired steady solution using a prescribed 

body motion.    The body motion may consist of either a systematic warping 

from an initial shape (e.g.,  a spherical cap) to a final shape (e.g.,  an 

ellipsoidal nose) or of moving a given body from, one configuration (e.g., 

flow at zero angle of attack) to another (e.g.,  flow at high angle of attack) 

or any combinations of these two.    The final steady flow is obtained by 

continuing the calculations in time with the desired body surface unchanged 

until the flow transients due to the prescribed motions have disappeared. 

Since as has been pointed out before,  the governing equations for unsteady 

flow are hyperbolic, the method of characteristics for unsteady flow 

may be conveniently used as a basis for solving the steady flow problem 

using this approach.    Here,   starting with a known flow field in the initial 

hyperplane   t -t0     ,  (e.g.,  the steady flow solution about a three-dimensional 

nose) a series of unsteady three-dimensional flow problems are solved step- 

by-step in time until the flow field no longer changes with time.    Although 

these computations may indeed be very tedious and involve long computer 

run times,   the flow fields about some rather arbitrary bodies can be 

determined. 
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Section 4 

RESULTS AND CONCLUSIONS 

4. 1 PROBLEM AREAS AND THEIR SOLUTIONS 

Before presenting the results obtained from the three-dimensional 

steady flow method of characteristics program,   it would seem to be desirable 

to first discuss some of the difficulties which arose during the chock out and 

debugging phases of the program development.    This discussion should prove 

helpful to those who attempt to utilize and/or modify the basic method as it 

was presented in Section   3.    The overall problems were stability,  accuracy, 

and computer running time,  in that order of importance.    These problems 

did,  however,  prove to be interrelated,   since once greater accuracy was 

attained the computer run time improved considerably. 

4.1.1 Interpolation 

As discussed previously,  when the integrations are performed by 

tiacing streamlines step-by-step through the flow field the points in each 

plane normal to the   X -axis do not maintain a uniform mesh spacing.    Con- 

sequently,  what was required was a bivariate interpolation procedure which 

was applicable to a net of irregularly distributed points.    Unfortunately, 

because of the generality of the problem,   very little attention beyond that of 
54   55 just stating the difficulties involved,   "'   '       has been given to it in past work. 

Generally,  using polynomials,   only two basic approaches to this problem are 

deemed useable.    The first possibility would be to use a method of least 

squares approximation whereby the number of base points through which the 

fit is to be passed exceeds the number of coefficients which are required in 

the fitting polynomial.    Using this procedure the sum of the squares of the 

errors represented by the differences between the value of a given function at 

a point and the value obtained for that function from the fit should be a min- 

imum.    The other possibility is to use an exact   polynomial fit through the 

given base points.    By "exact" here is meant that the error between the actual 

value of the function and the values obtained from the fit is zero at least to 

within the accuracy of the machine computations.    The form of each of these 

fits depends in turn upon the relative orientations of the base points,   the 

number of base points chosen and the form of the basic independent set of 
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basis functions which comprise the fit.    For example,   for linear fit in one 

variable, X ,   the basis functions would be /  and*). 

Both of the above methods were investigated for use with 

the three-dimensional characteristics program.    While these studies were 

were not exhaustive,   a few definite conclusions seemed to be justified. 

First,  for bodies with "rounded" cross-sections (i.e. ,   axisymmetric or 

elliptical cross-sections which are not too flat),   as would be expected, 

better fits  could be obtained by using combinations of the polar coordi- 

nates (rfcj) as the basis functions for the fits rather than the cartesian 

coordinates {a , «).    This was especially true in the case of the flow 

angles where relatively large changes occur around the body.    For bodies 

which have locally two-dimensional regions,   it would appear that probably 

a better set of basis functions would be combinations of the cartesian 

coordinates (PC , a ).    This point has not yet been thoroughly checked out 

however,   and probably even for these areas the polar fits will be satis- 

factory.    If not,  the program can readily be changed to allow for using 

different basis functions over different regions of the flow field.    In the 

case of an elliptical cross-section this could best be accomplished by 

translating the center of the ( u , <} ) coordinate system from the center of 

the ellipse to the focus,   and then using the ( V , CO ) - fit over the region of 

the field covering the "rounded" portion of the ellipse and the (u , 9 ) - fit 

over the remaining part. 

The accuracy of each surface fit was improved considerably by 

scaling the independent variables with respect to the coordinates of the 

central point used in the fit.    In many cases,   improvements in accuracy 

amounting to two significant figures were obtained by utilizing this 

technique.    Finally,   lor the ranges of points tested (e. g. ,   nets of 9 and 25 

points centered around a base point in the initial plane) with the polar fits, 

the method using least squares and that using the exact fit yielded approxi- 

mately the same accuracies for all functions fit.    However,   since the exact 

fit involves fewer operations and does in fact fit the data at the given points 

exactly,  this method was finally chosen for use with the program.    The 

justification for using an exact fit lies also in the fact that the data at each 
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known point is itself in a sense "exact" for a given problem and hence, 

smoothing procedures using least squares or other methods should not be 

required.    However,   as was indicated above,  these results are somewhat 

preliminary and now that the characteristics program is working,  a more 

thorough investigation of the surface fitting procedures,   as applied to 

several different flow fields,   should be undertaken. 

4.1.2 Flow Angle Derivatives 

A more fundamental difficulty occurred while attempting to apply 

the characteristics procedure to compute some simple two-dimensional and 

conical flow fields.    Two flow problems were studied initially, (1) a simple 

wedge and (2) a sharp cone - both at zero angle of attack.    In each case,  the 

minimum number of bicharacteristics (three) necessary to determine the 

flow properties at a new field point was utilized.    Tho wedge flow was success- 

fully reproduced to eight places in all flow variables during each axial step. 

This,  however,  was not a very demanding test because the flow field is 

initially uniform and no iteration was required in order to determine the flow 

properties at a new point.    Also,  the normal derivatives in the compatibility 

equations were in this case identically zero.    The flow rvei  a 10° right 

circular cone offered a more stringent test on the overall calculation proce- 

dure.      Although the initial data was axisymmetric to eight places,  the 

results in this case were non-axisymmetric.    The degree of non-axial 

symmetry varied according to the gradients existing in the flow and the 

step size.    However,  the pressure and flow angles were generally constant 

to only three significant figures (1 to 2%) around the cone after just one or 

two axial steps.    These azimuthal variations in the flow properties around 

an axi-symmetric body could be cttributed to the fact that as the calculations 

progressed around a given ring o.' data points (   f - constant),  the relative 

orientations of the three bicviracteristics which were used to determine the 

flow properties with respect to the azimuthal plane through the initial data 

point were different.    Thus,   the conditions at each new point would be expected 

to be slightly different,   in that conditions at the respective base points,   as 

determined from the interpolations,  were not the same.    The variations which 
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did in fact occur were surprisingly large.    These large variations were attri- 

buted to the fact that some first order effects were included in the compatibility 

equations through the assumption that the derivatives of the flow angles with 

respect to the coordinate directions were constant.     Hence,   in order ot obtain 

meaningful results,  better approximations to the derivatives were required. 

These were obtained by introducing extra bicharacteristics at each point and 

averaging the flow properties at the new point in the manner set forth in 

Section   3.    Actually,   in the program three sets of bicharacteristics (initial 

set is rotated 40") are utilized to obtain this average.    The averaging of the 

flow properties at the new point improved the accuracy of the calculation by 

as many as two signifigant figures.    In addition,   the more accurate proceedure 

converged in three cycles rather than the seven required without averaging; 

thus,   although more calculations were required within each cycle,   the net run 

time was not affected by the averaging procedure. 

4.1.3 Mach Cone Intersects the Shock 

Another difficulty was encountered when a new ring of field points 

was added near the shock wave as a result of introducing new streamlines 

from the previous shock point.    In this case,   a portion of the Mach forecone 

from a new field point intersects the shock wave surface.     Thus,   the base 

points of some of the bicharacteristics,   which are used to calculate the flow 

properties at the new field point,   intersect the initial data plane on the free- 

stream side of the shock surface.    Two different methods were utilized in 

attempting to solve this problem.    First,  the relevant portion of the shock 

surface and the flow quantities behind the shock were fitted by surface fits 

similar to those used in interpolating for the base points.   These fits were used 

to determine the coordinates of and flow properties at the base points of the 

bicharacteristics which intersected the shock surface, while those bicharacteristics 

on the portion of the Mach cone which did not intersect the shock were handled in 

the usual manner.   Even though this procedure seemed to work properly,   the 

results obtained were not compatible with the accuracy of the solution in the 
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remainder of the flow field.    For an axisymmetric flow field,  the results 

along the new ring were axisymmetric to only three places,  while the rest 

of the flow field remained so to six significant figures.    The reason for the 

discrepancy is thought to be due to the fact that the base points associated 

with each of the two separate fitting sc'iemes are treated with unequal 

weights since not the same number of bicharacteristics intersect the shock 

as intersect the field.    Time limitations prevented further development of 

this method.    Instead,  another much simpler technique was employed.    In 

this scheme,  the C-F-L stability criterion was in principle violated by 

allowing some of the bicharacteristics to pass through the shock surface 

and intersect the initial plane outside of the shock  layer.    The flow 

properties at these base points are determined by extrapolation,  utilizing 

the interpolating surface fits which had already been set up surrounding the 

initial shock point.    This procedure yielded results which were compatible 

with the remainder of the flow field solution,  and is the scheme that is 

presently being used with the program.    Note,  that violating the stability 

criterion in a small region does not seem to cause course instabilities to 

arise.    This is because basically,   instability is the result of a cumulative 

growth of errors throughout a calculation and does not usually result from 

a few isolated errors,  as is the    a.se here.    In order to prevent the extra- 

polations from being extended too far outside the shock wave,  the step size 

is halved before any points in the new plane are determined,  whenever a 

new ring of field points is to be added.    Note that since the streamline is 

inclined toward the shock wave,  only a small portion of the Mach forecone 

from a new point on the streamline will intersect the shock when the step 

size 4/\ ,   is small.    Thus the extrapolation described should be reasonably 

accurate as the results obtained thus far using this technique seem to 

indicate. 

4.1.4 Problems Associated with Large Angles of Attack 

In general,   as discussed above,   orienting the   X-axis (the axis 

along which the calculations proceed)    along the free stream wind direction 

has the advantage that the initial input data is axisymmetric and can be 
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obtained from two-independent variable programs.    However,   at large angles 

of attack (say 30°)   the flow in the shock layer on the windward side is at a 

relatively low Mach number.    Consequently,  the Mach lines are steeply 

inclined and the step size  Ax    between successive data planes is small.    In 

fact,  whenever the sum of the local two-dimensional flow angle   £   and the 

Mach angle AX is greater than 90° (see Figure 18)   the step size AX becomes 

negative and the calculations would proceed upstream.    The program is pre- 

sently incapable of handling this situation.    It should be emphasized however, 

that this limitation does not represent a deficiency in the overall method,  but 

is rather a problem due to the necessity of aligning the  x -direction with the 
I 

free stream-velocity vector in order to utilize axisymmetric inputs.    When- 

ever a method of obtaining non-axially symmetric inputs becomes available 
1 

the orientation of the  X -axis can be changed so that the condition <3 + X = 90° 
| 

is less likely to occur. 
t 

When the axial step is positive but small due to the low Mach 

number of the flow in the shock layer,  calculations of complete flow fields 

would be speeded up considerably by reorienting the x -axis parallel to either 

the body axis or to the windward side of the body.    This idea was investigated 

by rotating successive data planes by a small angular increment AjU about a 

point on the windward shock (Figure 18).   followed by a coordinate transforma- 

tion to a body-axis system.    Unfortunately,  programming difficulties and 

lack of time forestalled the realization of this scheme. 

4. 2 TYPICAL OPERATIONAL EXPERIENCE WITH THE PROGRAM 

The results of. typical field,  body and shock point calculations 

are given in Appendix B,  Tables B-I,   B-II,   and B-III.    The number of 

iterations shown are typical for calculations to date with the field and body 

generally requiring three to five cycles depending upon the gradients and the 

axial step size,  while the shock requires at least five.    Convergence at a 

shock point is slower,  because the first two cycles involve first,   an estimate 

of the direction of the shock normal,   and then a given ymall change in this 

direction in order to numerically determine the derivatives in the Newton-Raphson 
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procedure used to obtain the next values of shock parameters.    Thus,  the 

actual internal iteration process does not begin at the shock point until the 

third cycle of the overall iteration has been reached.    It then usually takes 

three more cycles to complete the shock point computation.    The results 

indicate that the coordinates and flow angles generally converge faster than 

do the pressure and velocity,  which usually converge at the same rate. 

Actually,  just the pressure has been used for the convergence tests thus far 

in the program and from the results obtained this seems to work quite well; 

however,   in some cases,  it might be better to test on both the velocity 

magnitude and the pressure - especially if a smaller convergence criterion 

than 10"° is used.    It should be noted that although the results in Tables B-I 

through B-III are given in terms of eight digit numbers corresponding to the 

nut 11ber of digits the machine carries,  only the first four or five digits are 

significant,  due to the various truncations which occur during the computation. 

The total computation time required to completely solve for the 

coordinates and flow properties at a particular field,  body or shock point is 

difficult to determine accurately.    It depends upon the gradients which exist 

in the flow,  the spacing between data points,  the axial step size and the 

convergence test criterion utilized.    An estimation of the time required can 

be obtained by dividing the total time taken to calculate several planes by the 

total number of points calculated.    Although this time includes the time required 

to read input data from the tape,   set up the initial data surface,  and write 

data back on output tape as desired,  the significant portion consists of the 

actual computation time - especially if several planes (1000 to 2000 points) 

are computed.    Using this technique,  the time ranged from 0. 30 to 0. 50 seconds 

per point on the IBM 7094 computer.    The comparable time for the IBM 7044 

would be about twice this value.    Thus,   it is absolutely necessary to decrease 

this time significantly,   if many problems are going to be run using the present 

method.    This will be especially true when the method is extended to  include 

nonequilibrium thermochemical effects. 
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4. 3 RESULTS FOR COMPLETE FLOW FIELDS 

Three different afterbody flow cases were computed using the 

three-dimensional method of characteristics program.    These consisted of 

the flow fields associated with a spherically blunted 15° cone at both  0° and 

10°  angles-of-attack,   and a spherically capped elliptical afterbody whose 

cross-sections were ellipses with the eccentricity of each varying as a 

function of the axial distance  X at 0° angle-of-attack.    Since the flows around 

the cone at 0° angle-of-attack and the elliptical body are symmetric with 

respect to the u  and 2   axes,   it is sufficient in these cases to calculate only 

one quadrant of the  entire field.    In the case of the blunted cone at angle-of- 

attack however,  there exists only one plane of symmetry (the plane containing 

the free stream velocity vector and the  y -axis) and a full 180° of the field 

must be computed. 

All computations were performed using the same input conditions 

obtained in the manner discussed in Paragraph 4. 2.    The radius   r0   ,  of the 

nose sphere in each case was 0. 28   cm with the center of the reference (X, U,f) 

coordinate system located at the center of the sphere.    An initial line of 

nine data points,  equally spaced between the body and the shock,  was provided 

by the two independent variable characteristics program at a non-dimension- 

alized (with respect to f0  )   axial coordinate x  equal to -0.4534.    This initial 

data line was parallel to the   y-axis in the  xu -plane.    To provide an initial 

plane of data points the initial line was rotated about the ;r-axis in given 

increments A uJ of the pol \r angles .    A different number of meridional rays 

were used for each of the problems studied.     The free-stream conditions 
.7 

were in all cases: ,f* - 8. 33,  ?<p  =3.153x10     ,   ~^ao - 25C °K corresponding 

to an altitude of 200,000 feet.    Results for each case studied will be presented 

separately. 

4. 3, 1 Blunted Cone At Zero Angle-of-Attack 

Calculation of the flow field about a blunted cone at zero angle-of- 

attack was carried out using five initial  meridional rays located 22. 5°  apart. 

It took approximately 205 steps to reach a distance of 8 nose radii down the 

body. The computer run time was nearly 90 minutes on the IBM 7094 computer. 
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While this run time is long,   it is far from the optimum that could be obtained 

using the program even in its present state of development.    Since limited 

computer time was available for each of the flow calculations described here, 

it was decided to allow the machine to choose the axial step size based upon 

the minimum mesh spacing in the field so that stability would be assured, 

and the program would proceed as far as possible without the necessity of 

re-running a problem.    While this objective was accomplished,  the step 

sizes the program chose were generally much smaller than would be necessary 

for stability.    This was because the minimum mesh spacing generally occurs 

between the last point on the ray and the point on the shock surface.    When 

new streamlines are added at the shock,  this mesh size is generally an order 

of magnitude smaller than the spacings between the rest of the points in the 

field.    Consequently,  the step size used after adding points near the shock is 

an order of magnitude smaller than the maximum that would probably be 

used in such computation.    It usually takes five or six axial steps for the step 

size to again approach a reasonable value.    A possible solution to this would 

be to set the axial step size at a given value based upon the C-F-L condition, 

and then calculate several steps using this constant value.    Then the step 

size could be changed again and another few steps could be computed,  and 

so on.    If the procedure were followed here,  the results indicated that an 

average step size somewhere between 0. 07 and 0. 08 (~p~ J    could be used. 

This improvement alone, would cut the calculation time by a factor of 

approximately two.    (A short test case indicated this to be feasible). 

Another way the computation time could be decreased would be 

to use fewer streamlines throughout the flow field.    In the present computation, 

streamlines were added at the shock on an average of once every 10 steps, 

so that a total of 21 points were specified along each ray in the final plane. 

This is probably more than enough to adequately describe the flow field for 

most ideal gas problems.      By dropping selected streamlines (e.g.,   every 

other one),   computing time would be reduced because one needs to calculate 

fewer points,   and in addition the axial step sizes can be increased as a direct 

consequence of the larger spacings between data points.    Between 10 and 20 

points on each ray should be adequate to solve steady flow problems for an 
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The shock wave shape and some typical streamlines are shown in 

Figure 20.    Since the scales used along the abscissa and ordinate are different, 

the shapes of these curves are somewhat distorted; however,  the body stream- 

line does correspond to a 1 5° cone.    As can be seen,  the shock shape agrees 

very well with that obtained from the two-independent variable characteristics 
49 solution,       the maximum variation amounting to about 0. 7%  at x = 7. 5.    The 

body shape and streamline patterns are also as would be expected.    Note the 

manner in which the program adds streamlines along the shock,  as the 

calculations proceed in the axial direction.    The addition of these extra 

streamlines is seen to be absolutely necessary if sufficient accuracy is to 

be maintained throughout the flow field. 

Results for the flow quantities at the shock and body in one 

meridional plane  are presented in Figures 21 through 24.    In all cases,  the 

data remained axially-symmetric to at least four significant figures over the 

entire range of the computation.    Figure 21  shows a comparison between the 

pressures obtained from the present program,   and the two variable program. 

The results are in good agreement and indicate that the truncation errors 

are approximately the same for both methods (order  of the step size squared). 

The pressure along the body reaches a minimum at approximately    x - 4. 25 

and then recompresses toward a constant sharp cone value as is expected. 

The total variation in pressure across the shock layer is nearly 8% greater 

using the three variable characteristics scheme than with the two variable 

method at an axial location   X - 7. 5.    However,  this discrepancy seems to 

be decreasing and as cone flow is reached,   it should nearly disappear.    The 

velocity  /   2-D flow angle 0 ,   and temperature 7"  are shown in Figures 22, 

23 and 24 respectively,  compared to the expected axisymmetric results. 

These comparisons again clearly show the accuracy of the technique with the 

maximum variations amounting to less than 1. 5%. 

Note in Figures 21  and 22 the appearance of a rather severe 

expansion for the 3-D solution on the body at the point of tangency between 

the spherical nose and the   conical afterbody { x = -0. 24) compared to the 

axisymmetric value.    The over-expansion is approximately 10% of the 

expected value,   and is propagated throughout the flow field in the form of 
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Figure 20 TYPICAL STREAMLINE SHAPES FOR BLUNT 15° CONE, cc = 0« 
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Figure 21 PRESSURE DISTRIBUTION OK BLUNT 15° CONE, « = 0« 
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Figure 22 VELOCITY DISTRIBUTION ON BLUNT 15" CONE, a = 0' 
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Figure 23 FLOW ANGLE, 0, FOR BLUNT I5e CONE, Q  = 0< 
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Figure 2H TEMPERATURE DISTRIBUTION FOR BLUNT 15' CONE, 0= 0* 
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an expansion wave.    Figures 25,  26 and 27 show the propagation of this wave 

along rays normal to the body axis for three different axial locations.    As 

shown in Figure 30 the expansion has just begun to form nt ar the body at an 

axial location of x = -0. 231 and the pressure throughout most of the shock 

layer corresponds to the expected axisymmetric value. 

4. 3. 2 Blunted Cone at 10° Angle-of-Attack 

The flow field about the same 15° blunted cone was computed at 

10°   angle-of-attack using initially 16 meridional rays located 11. 33° apart. 

Because of computing time limitations,  the computations were halted after 

an X coordinate equal to 3. 1 nose radii was reached.    At the time the 

computation was stopped,  it was proceeding smoothly and could have been 

continued,   if desired.    The calculations were proceeding at the rate of 

approximately one nose radius per hour on the IBM 7094.    However,  the 

same remarks concerning step size and mesh spacing that were given above 

for the zero angle-of-attack case,  would also apply here.    As an example, 

the average step size, & x •  used in the calculation,  was about  AX =0.03 

(nondimensionalized with respect to nose radius) while a short run indicated 

that step sizes as high as &% = 0. 07 could be used without causing instability 

for at least 20 axial steps.    It appears that optimizing the step size,  perhaps 

using the method discussed previously,   is required in order to improve the 

efficiency of the calculation. 

Another way the running times could be reduced would be to use 

the body axis as the    X- axis for the computation,   rather than a wind- 

oriented axis (See Figure 19) as was utilized here.    The shift to the new 

axis could be accomplished by rotating the x-axis to coincide with the body 

axis.    This would have the effect of decreasing the maximum flow angles 

and as a result increase the effective step size. 

The technique of dropping selected "rings" of data points was 

successfully tried in this calculation.    When 10 extra rings had been added, 

for a total of 19,  every other ring throughout the field was dropped from 

the computation.    The step size increased by a factor of 2 as would be 
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2 INDEPENDENT VARIABLES 

3 INDEPENDENT VARIABLES 

SHOCK 

1.3     l.i» 
■+- 

1.5 

Figure 25 PRESSURE DISTRIBUTION THROUGH SHOCK LAYER,BLUNT 15* CONE, 
a  = 0°, X = -0.231 
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1.3    l.ü     1.5 2.15 

Figure 26 PRESSURE DISTRIBUTION THROUGH SHOCK LAYER. BLUNT 15' CONE, 
0  = 0\ X = 1.058 
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e 

Figure 26 FLOW ANGLES ALONG SELECTED STREAMLINES FOR 
BLUNT 15° CONE, tt= 0° 
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expected and there was no noticeable e ffect on the flow properties along 

streamlines.    The computation proceeded for 0. 5 nose radii,   during which 

time,   another 3 rings of data points had been added to the field.     The overall 

computation time had thus been decreased by a factor of approximately 4 as 

compared to the previous rate.     The results of the calculation are shown in 

Figures 29 through 36.    Figure 29   shows a side view of the body and the shape 

of the shock wave on the most windward and most leeward sides of the cone. 

Also shown are isobaric curves on the body surface.     Note the region of 

transition from axially symmetric flow to fully three-dimensional flow on 

the body sui  ace.    The pressures on the windward and leeward sides of the 

cone differ by a factor of nearly five at the last axial location calculated. 

The three-dimensionality of the tiow along the body surface can 

also be seen in Figure 30,   where the azimuthal variation in pressure around 

the body for several different axial stations is presented.    At an axial location 

X = -0. 2,  the pressure is still constant over one half of the body surface. 

By the time station PC - 0. 0 is reached,   the flow is completely asymmetric, 

with the pressure on the leeward surface having fallen by a factor of two. 

The pressure then continues to decrease around the cone until section 

% - 1. 0 is reached.    Between axial stations   x - \. 0 and K - 2.0,  the 

pressure near the windward side of the cone has increased while the pressure 

over the remaining portion of the body surface continues to decrease.    When 

the computation was stopped,  the region of increasing pressure encompassed 

about one-third of the cone surface,   and was progressing toward the leeward 

side as expected.    The cone pressure at which the pressures on the windward 

and leeward sides should stabilize are also shown and appear to be the correct 

magnitude. 

The axial pressure distribution on the most windward generatrix 

of the cone is shown in Figure 31.    The typical overexpansion is evident with 

the minimum occurring in this case at approximately one nose radius from 

the center of the sphere.    As shown,  the pressure is approaching the equiva- 

lent cone pressure and should be constant after approximately 5 radii. 

The distribution of pressure across the shock layer is shown in 

Figures 32 and  35 in planes representing four different axial stations.    Note 
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Figure 29 PRESSURE DISTRIBUTION ON BLUNT 15' CONE, a = 10* 
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Figure 30 MERIDIONAL PRESSURE DISTRIBUTION FOR BLUNT 15« CONE FOR VARIOUS 
CROSS SECTIONS, a =  \Q* 
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that the body shape in each successive plane does not remain circular. 

Again,   this is because the   *-axis is parallel to the free stream velocity 

vector.    The results presented display basically the same pattern as those 
56 

which occur in cross-sections normal to the body axis. After the non- 

axisymmetry of the flow has been established,   the pressure is nearly constant 

along rays approximately normal to the body through most of the shock layer. 

The maximum pressure variation through the shock layer is approximately 

half the total azimuthal variation on the body at   X = 3.124 with the largest 

gradients existing near the shock.    Note also that the shock wave remains 

nearly circular with respect to the wind oriented axis,   for the region of the 

flow field calculated.    The scale used in Figure 36 is different from that 

used in the three previous figures.     Hence,   although the body diameter and 

shock layer thickness appear to be smaller than those at station X= 2.011 

they are actually much larger. 

The pressure distribution obtained along the body surface was 

smooth,  although small oscillations similar to those discussed above for 0° 

angle-of-attack did appear along rays normal to the body.    The amplitudes 

of the oscillations were in this case much smaller than before,  and disappeared 

when the expansion wave reached the shock.    The reason the amplitudes were 

smaller can probably be attributed to the fact that smaller axial step sizes 

were taken in the region of the shoulder between the nose sphere and the cone. 

Hence,  the speculation that the oscillations can be completely eliminated if 

sufficiently small step sizes are taken in this region appears to be justified. 

The pressure distributions shown in Figures 32 through 35 represent the 

mean values of the oscillations.    A typical oscillation around the mean is 

shown in Figure 34. 

The intersections of various streamlines with the plane X- 3. 124 

are shown in Figure 36.    The dashed lines represent the locations of the 

original rays from the body to the shock,   as they would appear if the body 

and flow field were axisymmetric with respect to the origin.    For comparison, 

the shape of the body cross-section as it appeared in the initial plane is also 

presented.    Each curve represents the locus of streamlines which were 

initially located on the same ray.    The streamlines near the body are "spinning" 
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Figure 32 PRESSURE DISTRIBUTION ACROSS SHOCK LAYER FOR SPHERICALLY BLUNTED 
CONE, p -- p'//^Cr' 
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2.1» 

Figure 33 PRESSURE DISTRIBUTION ACROSS SHOCK LAYER FOR SPHERICALLY BLUNTED 

CONE, p--   p'//>J(£S 
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Figure 31  PRESSURE DISTRIBUTION ACROSS SHOCK LAYER FOR SPHERICALLY BLUNTED 
CONE, p  = p'feVj- 
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Figure 35 PRESSURE DISTRIBUTION ACROSS SHOCK LAYER FOR SPHERICALLY BLUNTED 

CONE, p --  o'//C<jJ 
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toward the leeward side,  with the maximum displacements away from the 

initial ray having occurred on the body in the  region where the pressure 

gradients are greatest,   as would be expected.    Near the shock however,   the 

displacements are slight,   indicating again that the flow in this region has 

remained nearly axisymrnetric.    The fact that the streamlines flow toward 

the leeward side indicates that it will be necessary to include a subroutine 

in the program which adds new streamlines through the shock layer on the 

windward side as they are needed for sufficient resolution of the flow field. 

One convenient way to allow for this,  would be to choose more initial rays 

on the windward side of the body,   and use unequal meridional  spacings for 

the rays in the initial plane.    The program is capable of handling this situation. 

Also,   it will be necessary to drop streamlines as they crowd together on the 

leeward side.    Probably the best way to accomplish all of these objectives 

would be to realign the mesh along body normals by interpolation at selected 

axial stations.    Although this procedure involves shifting from one set of 

streamlines to another midway through the calculation scheme,   it can be 

accomplished with little extra programming effort,   since the interpolation 

routine is already available in the program.    The percentage increase in the 

overall computation time should be small,   since the mesh points need be 

realigned in this manner perhaps only three or four times throughout a 

particular flow field calculation. 

4. 3. 3 Elliptical Afterbody 

The third example consists of the flow field around a spherically 

blunted elliptical alterbody at zero angle-of-attack.    The locus of the semi- 

major axes of the ellipses in c russ-sections normal to the body axis is a 

straight line inclined at 15° tu the body axis,   while the locus of the semi- 

minor axes is a straight line inclined at 5° to the axis.     Thus,   cross-sections 

of the body are elliptical with eccentricities varying as a function   ef the 

axial coordinate X •    The equation of the body is written in three separate 

sections.    P'irst,   the spherical nose; 

B (x , y,j) = z* + y z+g z~ (l. o) =0 (128) 
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Second,   the transition region through which the locus of semi-major axes 

is a straight line,   while the locus of semi-minor axes is a circle; 

Bf'*.],}) =a7?J^+" T&F- ~/ = 0 <129> 

where a(x) * (Z X~"X*) {*   .7+118 ± x* . <tfz9f- (130) 

t (x)  =    .7673 + .ZCQ7C (131) 

and finally,   the afterbody region where the loci of the semi-major and minor 

axes are both straight lines and 

where, 
tx(%) =   . 9/2&i- +.OS7H-9X (133) 

h (x) =    .  2^*   t • ?£ 75 (134) 

X    >     .llZSf- 

The res«.its of the computation are givn in Figures 37 through 

40.    In this case,   a total of 9 meridional       . s containing 9 points each 

was used in the initial plane.    The ray spacings were constant and equal 

to II. 25°.    It required nearly 90 minuter on an IBM 7094 to calculate 3 

nose radii using an average step of 0.03 radii.    Seven rings of data points 

were added at the shock throughout the entire computation,   while no point 

dropping was employed.    Again,   since rather large step sizes ;0. 08) were 

used in the transition region near the nose,   oscillations similar to those 

discussed above did develop in the field.     The curves  shown represent 

the mean values of the oscillations.    The amplitudes of these oscillations 

were again decreasing as the computation ; lOceeded downstream.     However, 

since the initial expansion wave bad not yet reached the shock,   the oscillations 

were still apparent.    A typical oscillation around an isobar in the final data 

plane calculated i? shown in figure 40.    In this case,   the expansion wave is 

just, over one-half the distance through the   shock layer. 
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The pressrre distribution along the body is shown in Figure 37 

in the form of isobaric curves.    The locus of the semi-minor axes coincides 

with the X-axis,  while the locus of the semi-major axes is shown in the 

figure.    The asymmetry of the distribution is apparent,  with a pressure 

decrease of 30% occurring around the body in the last plane calculated 

(X - 3. 0).    The "humps" which occur along the isobars near the nose are 

again caused by the initial overexpansion in the transition region.    They 

could be eliminated by taking smaller step sizes in this region. 

The pressure distributions through the shock layer are presented 

in Figures 38,   39 and 40  for cross-sections at % = 1.0 7,   2. 01 and 3.02, 

respectively.    The shock wave and body shapes are also shown in each plane. 

Note that the shock is still axisymmetric in the last plane calculated.    Also, 

the bluntness factor of the body ellipse in the last plane calculated is only 

1. 2 compared with the asymptotic value of 2. 2 for this particular body.    Thus, 

the problem is not nearly as three-dimensional as was intially anticipated. 

Computer time limitations prevented carrying the solution out farther in 

the axial direction. 

In the last plane,   nearly all of the shock layer has an asymmetric 

pressure distribution,   whereas,   at X~ 1.07,   the distribution is still axi - 

symmetric through almost one-half of the layer.    Along the low pressure 

edge of the body,   the shock laye*- thickness is 1. 3 as compared with the 

value of 1. 0 along the high pressure edge in this final plane.    The shock 

layer thickness is thus over three times as large as the initial value of 

0. 37.     Generally,   the pressure distributions correspond to what would be 

expected for the elliptical afterbody,   and except for the oscillations which 

did arise through the field,   the results of the run seem to again verify the 

fact that the present version of the program is working correctly. 
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Figure 39 PRESSURE DISTRIBUTION ACROS- SHOCK LAYER FOR SPHERICALLY BLUNTED 
ELLIPTICAL AFTERBODY, <* = 0',  X = 2.0W 
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Figure HO PRESSURE DISTRIBUTION ACROSS SHOCK LAYER FOR SPHERICALLY BLUNTED 

ELLIPTICAL AFTERBODY, (X = 0°. X = 3.018 
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Section 5 

CONCLUSIONS 

Many three-dimensional steady flow fields can be calculated 

utilizing the numerical procedures presented in this report; however,   the 

computer times are quite long.    Extension of the program developed here to 

include physico-chemical models more complex than the perfect gas can also 

be readily accomplished.    As a matter of fact,   the scheme developed is 

especially applicable to solving chemically frozen and finite-rate reacting 

flows.    However,   the economic practicality of such calculations is considered 

to be marginal with presently available equipment. 

On the next generation of computers these problems should be 

feasible.    The three-dimensional steady flow program developed here involve 

large amounts of input and output data.    Although the abundance of output 

data can be controlled by printing out only a few selected planes of data during 

a computation,   the tasks of handling and presenting even these data are still 

tedious.    The development of internal computer methods for quickly handling 

and displaying the output data graphically or in some other convenient form, 

is thus necessary. 

Several basic conclusions can be stated regarding the general 

numerical scheme.    First,  the Courant-Friedrichs-Lewy (C-F-L) stability 

criterion proved to be a sufficient condition to insure stability of the integra- 

tion procedure.    It should be noted,   however,   that with the fitting procedures 

utilized here,   strict adherence to the C-F-L condition is probably not always 

required.    Hence,   it appears possible to enlarge the domain of dependence of 

the difference equations slightly by extrapolation using the polynomial surface 

fits without affecting the accuracy of the solution.    The total computing time 

per problem would in turn be decreased.    Second,   for accuracy and stability, 

higher order fitting procedures than linear are necessary.    The quadratic fits 

used here are expected to oe sufficiently accurate for most flow problems. 

Finally,   in order to reduce truncation errors to second order in the step size, 

it is necessary to add extra bicharacteristics in addition to those that would 

be required for a simplical mesh,    The results obtained from the program 

utilizing the extra bicharacteristics compared closely with those obtained 

from a two independent variable method of characteristics solution. 
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The greatest advantage to be derived from the procedure 

developed here lies in the fact that for the most part (except when mesh 

"squaring" is used) the integrations proceed along the same streamlines. 

This greatly simplifies inhomogeneous-frozen and nonequilibrium flow field 

calculations by significantly reducing the number of interpolations.    Having 

the output data available along streamlines is also useful for visualizing 

the flow field associated with a particular body,   and for applying the pressure 

distribution obtained from the program to calculate three-dimensional boundary 

layers. 

For the Cauchy problem considered,   a large amount of initial 

data is required to calculate a given flow field.    For a. general three-dimen- 

sional body,   this data must be supplied at points on an initial plane (or surface) 

located entirely in the supersonic portion of the flow field.    Thus,  what is in 

general required is some method for obtaining asymmetric inputs on the 

initial plane.    Unfortunately,   such a method is not yet available,   and,  for 

the problems considered,   it is necessary to limit the geometries to spherically 

capped afterbodies,  for which axisymmetric inputs can be utilized.    When 

methods for calculating non-axisymmetric blunt body flows become 

available,   they can be used to supply inputs to the steady flow method of 

characteristics scheme utilized here.    One possible way to obtain asymmetric 

inputs would be to generalize the present program to include unsteady flow. 

Starting from one known steady blunt body solution,   another steady flow solu- 

tion could be obtained asymptotically in time,   after the nose cap has undergone 

certain prescribed motions (or shape changes).    Thus,   using a combination 

of three-dimensional steady and unsteady program,   one could analyze rather 

general body shapes and motions. 
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Appendix A 

PROGRAM DETAILS AND OPERATING PROCEDURES 

This appendix presents the information necessary for running 

the program and interputing the output.    Paragraph A. 1 contains information 

on the program limits and its application and tape requirements.    Paragraph 

A. 2 gives detailed description of the input data and its preparation for 

I starting or restarting a given computational problem.    Also included here 

arc prepared input format sheets for ease in punching the input data cards. 

The output from the program is discussed in Paragraph A. 3.    Details con- 
j 

cerning the data storage are given in Paragraph A. 4,    A description of 

each subroutine is included in Paragraph A. 5.    A correspondence table 

listing the correspondence between the FORTRAN and the report symbols 

is included in Paragraph A. 6.    Finally,  Paragraph A. 7 includes logical 

flow charts describing the program. 

A. 1 DESCRIPTION OF DIGITAL COMPUTER PROGRAM 

The computer program described here is an extension and 

modification of that developed in Reference 59.    It was originally intended 

that the final program would be capable of computing supersonic flows 

arourJ fairly general bodies including exactly the effects of chemical 

reactions and vibrational relaxations.    However,   experience with the 

ideal gas three variable program and axisymmetric and two-dimensional 

solutions (see Reference 60) indicated that such computations were beyond 

the capabilities of present computer systems when reasonable running 

times and machine storage requirements were taken into account.    Therefore, 

in the interest of cons^iving machine time while at the same time obtaining 

a  reasonably close approximation to the flow field,   it was decided that the 

next logical and least costly extension to the ideal gas program would be 

to add the frozen-inhomogeneous thermo-chemical model described above. 

This modification was introduced into the present versio" of the program. 

The pressure distribution thus obtained corresponds to the frozen solution. 
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It may then be utilized to obtain a more complete description of the flow 

field by using a one dimensional stream tube integration program aiong 

each of the streamlines followed in the characteristics procedure.    To 

facilitate the computations for the nonequilibrium solution,  the streamline 

locations and pressures for each step are printed out on binary tape so that 

they may then be easily used by a suitable stream tube integration program. 

Actually such a computation has been performed but the program required is 

not yet completed and is not being reported here.    Since the present version 

of the program is considerably diffc rent than the original ideal gas version, 

the solutions described above and in Reference 5 9 were recomputed for an 

ideal gas.    In this manner many program errors were uncovered and 

corrected.    The program was also run using the frozen-inhomogeneous 

option for a 6 inch nose radius spherically capped cone at zero ang.1e of 

attack.    The results indicated that this option is working correctly. 
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A. 1.1 General Discussion 

The greatest part of the computations involved in determining 

the flow properties in the shock layer about a three-dimensional body 

are contained in the subroutines which calculate body points,  field points 

and shock points in the manner set forth in Section   3.    All other sub- 

routines (incl    '".rig the main program) are merely subordinate routines 

to these three and a:e used to shift required data around in storage, 

perform supporting calculations and handle input/output procedures. 

The main program controls the overall logic of the scheme by 

first choosing an initial point located in the field or on the body or shock 

surfaces,  calling the respective principal subroutine and accepting the 

results for the newly calculated point.    It then stores these results as a 

point r,n the new data plane and proceeds on to another initia1 point.    When 

all the points on the initial data plane are thus determined the newly 

calculated aata plane then serves as the next initial plane,  and the 

calculations are continued.    New data planes normal to the X-direction 

are continually calculated until either a predetermined      coordinate is 

reached,  or a given maximum number of planes are so determined -- at 

which time the computations are halted.    The relationships among the 

various subroutines used and the main program are shown in terms of a 

general calling ^sequence chart in Figure A-l.A detailed description of 

each of the subroutines will be given in Paragraph A. 3. 

A.1.2 Program Versions 

Due to the length of the program,   it is necessary to employ 

either the CHAIN feature of the 7044 operating system or an overlay 

structure on the 7094 (see Figure A-2).    The differences between the two 

operating systems has necessitated the preparation of two closely similar 

versions of the program.    The version described here is that suitable for 

the 7094.    For the 7044 system the subroutine INPUT is treated as a separate 

link in the CHAIN. 
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Figure Ä-l SUBROUTINE CALLING SEQUENCE 
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A. 1.3 Tape Requirements 

(a) TAPE 2        binary tape.    Data from an integration 

plane are stored on tape 2 for every N 

planes computed where N is an input constant. 

This tape is used for restarting a computation. 

(b) TAPE 3        binary tape.    Common data are stored on 

tape 3.    This may be used to provide inputs 

to a finite rate stream tube integration program. 

(c) TAPE 4        binary tape.    Streamline data which can be 

used for reacting stream tube integration 

scheme is stored on binary tape 4. 

(d) TAPE 5 System input tape. 

(e) TAPE 6 System output tape. 
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A. 2 DESCRIPTION AND PREPARATION OF INPUT DATA 

As was discussed in Paragraph 3. 5,   a plane (or surface) of inputs 

is required to any three-dimensional characteristics program.    Obtaining 

data for such an initial plane is sometimes difficult owing to the lack of 

suitable three-dimensional blunt-body solutions.    However,   for many config- 

urations having spherical noses,   it is possible to assume axisymmetric flow 

up to some axial station.    For such cases,   the program described in 

Reference t>0 may be modified to punch out most of the input cards needed 

for the present program.    The necessary changes are detailed in Appendix C. 

In this report,   the inputs were obtained by combining an inverse 
39 35 

technique      with an axisymmetric method of characteristics solution     .    The 

inverse scheme of Garr and Marrone was used to obtain several data points 

between the shock and the body on a line normal to the shock and located 

slightly downstream of the sonic line.    The two variable method of character- 

istics program was then utilized to extend this solution a short distance down- 

stream,   until a sufficient number of initial data points could be determined 

on a line normal to the free stream wind direction (see Figure 19).    A plane 

normal to the wind direction containing this line is chosen to be the initial 

data plane for the three-dimensional computation.    Since the body is initially 

axisymmetric (e.g.,  a spherical nose cap) it suffices to obtain the input along 

one line only.    Flow properties at initial data points throughout the initial 

plane are obtained by rotating the initial data line around the     x  axis (e.g., 

the wind axis) in chosen increments in    f    ,   the angle between any azimuthal 

plane and the   x y     plane.    At each point chosen on the initial data line,   the 

radius    f    ,   the pressure    P    ,   the velocity    Ä ,   and the two-dimensional flow 

angle    X are required as inputs to the program.    In addition,   the two- 

dimensional shock angle   <r  ,   the angle-of-attack cc    ,   the gas constant   R  , 

and various free stream and nondimensionalizing parameters are needed. 

All input parameters are dimensioned such that the following form of the 

equation of state holds 

121 



lor whatever units arc chosen.     Energies are made nondimensional with 

relations of the form 

while for pressure 

P ~<°-tä (A-3) 

is used.    Here,   the subscript      oo     refers to free stream conditions while 

the primes denote dimensional quantities.    In the computer program the 

number 0 (zero) is used to designate free stream conditions and is inter- 

changeable with   oo .    As long as Equation (A-l) through (A-3) are satisfied 

any system of units may be employed.    A complete listing of the required 

inputs and associated formats is given in Paragraph A. 5. 

It should again be mentioned here that this method of starting 

the three-dimensional characteristics solution from a plane of axisymmetric 

inputs,   is valid only when the geometry downstream of the sphere is such 

that the sonic point is located on the sphere,   for the geometries and angles 

of attack being considered. 

A. 2. 1 Description of Input Data 

Input to the program is provided on data cards if the problem to be 

computed is a new case.    If the problem is a restart of a previous incomplete 

run,   input data are provided on cards and on a binary tape.    A description of 

the format and order of the input data cards follows is shown in Table A-l. 

The input formats have been simplified as much as possible,  with 1615 

being used for fixed point data and  5E1 5» 7 being used for floating point as 

they are consistent with the formulae in Paragraph A. 2.    The steps of this 

input procedure are keyed to the blanks in the accompanying INPUT FORMAT 

(See Figure   A-3).      The sign of the exponent is located by a small s.    Enter 

decimal points and right-adjust integer numbers. 
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TABLE A-I 

TABLE OF INPUT DATA CARDS 

Card                        Column Number 
Number  Number MNEMONIC Item Entered Representation 

1 1-5 NRUN 

; 

Control labeling Integer 
run number. 15 
Any integer 
number may be 
used. 

Control constant - Integer 
If ITAPE is not 15 

1  - 5 ITAPE 

equal to zero, 
data store is on 
binary tape. 

6-10 NPLIN Control constant - Integer 
When ITAPE f 0, 15 
NPLIN defines the 
number of the data 
plane from which 
the computations 
are to be re- 
started. 

11-15 IREC4N Control constant - Integer 
defines number of 15 
records to be 
skipped on tape 4 
when ITAPE  £ 0. 

1  - 5 NSPEC Number of species        Integer 
included in gas 15 
model description 
2   * NSPEC  *   8 

6-10 NR Not used in frozen Integer 
program - Number i"5 
of reactions in- 
cluded in non- 
equilibrium option 

11-15 NC Number of elements     Integer 
15 

Note:    If ITAPE 4* 0,  the only remaining data cards are 3*through 6: 

below; otherwise cards 3 through 6* are used 
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Table A-I  (Cont. ) 

TABLE OF INPUT DATA CARDS 

Card 
Number 

Colum .1 
Number 

16 - 20 

MNEMONIC 

NVIB 

Item Entered 

Number of vibra- 
tors not in vibra- 
tional equilibrium 
0 ^-NVIB £ 2 

Number 
Representation 

Integer 
15 

21   - 25 MODEL 0 - frozen solution 
is computed 

1 - ideal gas model 
is assumed 

Integer 
15 

26 - 30 NP180 

31 - :s IPTc 

C - 90° section Integer 
of flow field is l'5 
computed 

1   -  180° section 
is computed 

Number of points Integer 
on initial data 15 
input ray 
3   sIPTS   £ 21 

36  • 40 

41   - 45 

NPTS 

NROTAT 

46 -  50 MDELAY 

Number of rays in Integer 
initial data plane 15 
3   <   NPTS  £ 29 

Control constant - Integer 
Used when initial 15 
coordinate system 
is to be rotated to 
body fixed system 

Control constant - Integer 
Defines number of 15 
rings which are 
used in surface 
fitting procedure. 
Set MDELAY = 3 
always. 
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Table A-1   (Cant. ) 

TABLE OF INPUT DATA CARDS 

Card Column 
Number Number MNEMONIC 

4 1   - 5 for J = NSPEC(J) 
6-10 for J = 2 

11   -  1 5 for J - 5 
16 - 20 for J = 4 
21   - 25 for J = 5 
26 - 30 for J -- 6 
31   - 3 5 for J = 7 
36 - 40 for J = 8 

1  -  15 

16 - 30 

1  -  15 

16 - 30 

31   - 45 

46 - 60 

ol  - 75 

SIGMA 

SIGMA 1 

RH0 

U0 

R0 

TO 

WMW0 

Item Entered 

Define which species 
are used in model 
description.    Species 
are tagged e.s follows 

Number 
Representation 

Integer 
15 

NOSPEC =  1 for O 
NOSPEC - 2 for N 
NOSPEC = 3 for e- 
NOSPEC = 4 for Ar 
NOSPEC = 5 for Oz 

NOSPEC = 6 for N2 

NOSPEC = 7 for NO 
NOSPEC = 8 for NO + 

2-D shock angle at Floating 
shock point on initial E15.7 
ray (degrees) 

2-D shock angle at Floating 
a shock point slightly E15.7 
downstream of initial 
ray 

Free stream density- Floating 
(gms/cm3) or El 5. 7 
(slugs/ft3) 

Free stream velocity Floating 
(cm/sec) or (ft/sec) E15.7 

Universal gas Floating 
constant (ergb/mole  °K)      El 5. 7 
or (ft lb/mole °R) 

Free stream Floating 
temperature El 5, 7 
(°K) or   (°R) 

Free stream molecular       Floating 
weight El 5. 7 
(   -XL        ov   {&.    ) 

wioie. 
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Table A-l (Cont. ) 

TABLE OF INPUT DATA CARDS 

Card 
Number 

7 

Column 
Number 

1  -  15 

16 - 30 

31  - 45 

MNEMONIC 

DIML 

HINF 

X0 

Item Entered 

Reference length 
(usually bow shock 
radius) (cm) or (ft) 

Total enthalpy 
(nondimensional) 
*.*« '•/* '7-4 

x-coordinate of 
initial plane - Note: 
x,   y,   z system is 
referenced at center 
of spherical nose 
(nondimensional) 

Number 
Representation 

Floating 
E15.7 

Floating 
E15.7 

Floating 
El 5. 7 

46 i». 60 

61  - 75 

1  -  15 

16 - 30 

THETFS Free stream flow 
angle Ofs     (degrees) 

Floating 
E15.7 

PSIFS Free stream flow 
angle   ffj    (degrees) 
(Note:    always enter 
0.0 here) 

Floating 
E15.7 

BIGAM Free stream specific 
heat ratio 

Floating 
E15.7 

EPSINF 
(1) 

Free stream vibra- 
tional i-nergy for 

Floating 
E15. 7 

31   - 45 EPSINF 
(2) 

fi rst vibrator 
(Note:    If NVIB = 0, 
EPSINF (1) = 0.0) 
(nondimensional) 

Free stream vibra- 
tional energy for 
second vibrator 
(Note:    If NVIB =  0 
or  1,   EPSINF(2) = 0. 
(Nondimensional) 

0) 

Floating 
El 5. 7 
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TABLE A-I  (Cont. ) 

TABLE OF INPUT DATA CARDS 

Card 
Number 

Column 
Number 

46 - 60 

MNEMONIC Item Entered 
Number 

Representation 

PGRAD Estimated pressure Floating 
gradient along El 5.7 
streamlines 
0. 95£PGRAD< 1.05 

(Expansion) (Compression) 

61  - 75 AXIS 

10 

11 

12 

1  - 15 

16 - 30 

1 - 15 for J = 1 
16 - 30 for J = 2 
31 - 45 for J = j 
46 - 60 for J = 4 
61  - 75 for J = 5 

ATTACK 

ERROR 

GAMAM(J) 

1  - 15 for J = 6   GAMAM(J) 
16 - 30 for J = 7 
31  - 45 for J = 8 

1  - 15 

16 - 30 

ALPHA (I) 

R(I) 

Angle final  x-axis Floating 
makes with body El 5. 7 
axis after rotation 
(degrees) 

Angle-of-attack Floating 
(degrees) El 5.7 

Error test stop for Floating 
internal program El 5. 7 
iterations (usually 
error =  1. 0 x 10"5) 

Free stream concen- Floating 
tration for species El 5. 7 
(J) in order specified 
by NOSPEC(J) (see 
card 4) (Note:    If J 

> NSPEC,  GAMAM(J) 
= 0.0).    (Nondimensional) 

Free stream concen- Floating 
trations for species El 5. 7 
(J) (6 * J ^ 8) (see 
details under card 10) 

2-D flow angle ( ac ) Floating 
for input c.ata point El 5. 7 
(I) (radians) 

2-D radius to point Floating 
(I) on initial line El 5. 7 
(nondimensional) 
-*7 ~ /Vz /DIN\L 
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TABLE A-I(Cont. ) 

TABLE OF INPUT DATA CARDS 

Card 
Number 

Column 
Number MNEMONIC 

P(D 

Item Entered 

Pressure for point 
(I) on initial line, 
(nondimensional) 

Number 
Representation 

31 - 45 Floating 
E15.7 

*~rt/%<C 
i 

i 
46 -60 Q(D Velocity for point 

(I) on initial line 
Floating 
E15.7 

61 - 75 

13 1 - 15 

16 - 30 

14 1  - 15 

T(I) 

RHO(I) 

XMW (I) 

EPSI(I, 1) 

16 - 30 EPSI(I,2) 

(nondimensional) 
Or = Or /uL 

Temperature for Floating 
point (I) on initial El 5. 7 
line (nondimensional) 

Density for initial Floating 
point (nondimensional)      E15.7 

Molecular weight Floating 
for initial point (I) El 5. 7 
(nondimensional) 

Vibrational energy of        Floating 
first vibrator for E15.7 
point I. 
(nondimensional) 

(EPSI(I, 1) = 0.0 if 
NVIB = 0) 

Vibrational energy of Floating 
second vibrator for El 5. 7 
point (I), 
(nondimensional) 

(EPSI(I, 2) = 0.0 if 
NVIB  ^  1) 
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TABLE   A-I  (Cont. ) 

TABLE OF INPUT DATA CARDS 

Card Column 
Number Number MNEMONIC 

15 1   -  15,   J =   1 
16-30,   J = 2 
31   - 45,   J = 3 
46-60,  J = 4 
61  - 75,  J = 5 

GAMMAI(I, J) 

16 

Item Entered 
Number 

Representation 

1 
16 
31 

15, 
30, 
45, 

J = 
J = 
J = 

GAMMAI(I.J) 

Concentration of Floating 
species (J) for point El 5, 7 
(I) on initial data 
line,   (nondimensional) 

/    - X*'   MI ,'    ,»y>t>lcj:   i  

(if J NSPEC =  0.0) 

See description on Floating 
card 15 E15. 7 

Note:     Cards 12 through 16 are repeated for each point on the initial line 
from the body (I = 1) to the shock (I = IPTS) until a total of 1 1 + 5IPTS 
cards have been added. This completes the specification of the initial 
ray input data. 

12 + 

13 + 

14 + 

15 + 

5IPTS 1 - 15, N = 2 OMEGA(N) Azimuthal angle of Floating 
16 - 30, N = 3 ray (N) in initial E15.7 
31 - 45, N = 4 plane (degrees) 
46 - 60, N = 5 (if N > NMAX, 
61 - 75, N = 6 OMEGA(N) = 0. 0) 

5IPTS 1 - 15, N = 7 OMEGA(N) See card Floating 
16 - 30, N = 8 12 + 5IPTS E15.7 
31 - 45, N = 9 
46 - 60, N = 10 
61 - 75, N = 1 1 

5IPTS 1 - 15, N = 12 OMEGA (N) See card Floating 
16 - 30, N = 13 12 + 5IPTS E15. 7 
31 - 45, N = 14 
46 - 60, N = 15 
61 - 75, N = 16 

5IPTS l - 15, N = 17 OMEGA (N) See card Floating 
16 - 30, N = 18 12 + 5IPTS E15.7 
31 - 45, N = 19 
46 - 60, N = 20 
61 - 75, N = 21 
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TABLE A-I  (Cont. ) 

TABLE OF INPUT DATA CARDS 

Card Column Number 
Number Numb er MNEMONIC 

OMEGA{N) 

Item Entered 

See card 

Representation 

t  + 5IPTS 1 -  15, N = 11 Floating 
16 - 30, N s 23 12  f 5IP1S El 5.7 
31 - 45, N = 24 
46 - 60, N = 25 
61 - 75, N = 26 

7 + 5IPTS 1 -  15, N = 27 OMEGA (N) See card Floating 
16 - 30, N = 28 12 +  5IPTS E15.7 
31 - 45, N = 29 

3* 1 - 5 N PR INT If N PR INT 
initial data 
is not print 

= 0 
plane 
ed out 

Integer 
15 

11-15 

21 

MODPLN 

NPLOUT 

16 - 20 NITER 

NPLMAX 

A plane of output Integer 
data is printed out 15 
every MODPLN 
integration steps. 

A  plane of output Integer 
data is printed out 15 
on binary tape 4 
every NPLUT 
integration steps. 

Maximum number Integer 
of cycles allowed 15 
for internal 
iteration loops, 
(usually NITER -   10) 

Maximum integration      Integer 
plane number to be 
calculated.    If this is 
a  restart of a partially 
completed case,   this 
number should be 
equal to number of 
steps already completed 
+   number of steps 
de si red. 

15 
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TABLE A-I  (Cont. ) 

TABLE OF INPUT DATA CARDS 

Card 
Number 

Column 
Number 

26 - 30 

MNEMONIC 

IPTMAX 

Item Entered  

Maximum number 
of rings allowed 
15-IPTMAX ^21 

Number 
Representation 

Integer 
Ic 

4* 1   - CSST CSST controls the 
addition of a new 
ring of streamlines 
at the shock.    A 
value close to  1 . 0 
is customary but 
this may be   in- 
creased if less 
detail is required 
near the shock. 

Floating 
E15.7 

16 - 30 

31  - 45 

CONST1 Step size control. Floating 
The step size is El 5. 7 
multiplied by 
CONSTl  each time 
it is computed. 
Usually 
0. 6=iCONSTl £ 1.0 

CONST2 Step size control. Floating 
Limits step size when        El 5. 7 
a new ring of field 
points are added at 
shock.    Usually 
CONST2 =  1.5 

46 - 60 

60 - 75 

1   - 5 

ERROR 

XMAX 

ISW 

See card 9,   columns 
16-30 

Floating 
E15.7 

Maximum 
x-coordinate to be 
computed. 

Floating 
F15.7 

Control constant for 
internal clumps.    See 

Integer 
15 

Section A. 3 for sub- 
routines involved. 
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TABLE A-I   (Cont. ) 

TABLE OF INPUT DATA CARDS 

Card Column Number 
Number Number MNEMONIC Item Entered Representation 

6-   10 ISW2 SameaslSWl Integer 
15 

11   -  15 ISW3 SameaslSWl Integer 
15 

16 - 20 ISW4 Same as ISW1 Integer 
15 

21-25 ISW 5 Same as ISW 1 Integer 
15 

26 - 30 ISW6 Same as ISW 1 Integer 
15 

6* 1-15 RBDY Spherical nose Floating 
radius in cm or ft El 5. 7 

16-30 SLOPE1 Slope of conical Floating 
afterbody for El 5. 7 
ci rcular cone 
sphere combination 
(degrees) 

31-45 SLOPE2 Slope of expansion Floating 
side for elliptical El 5. 7 
cone at 0° angle of 
attack (degrees) 

46 - 60 SLOPES Slope of compression     Floating 
side for elliptical El 5. 7 
cone at 0° angle of 
attack (degrees) 

61   - 75 BDYTYP Define body type = Floating 
1 . 0 for a spherical El 5. 7 
nose and right 
circular cone 
afterbody 

= Z.O for a splie rical 
nose and an elliptical 
afterbody with major 
axis along   2 -direction 

= 3.0 for a spherical 
nose and an elliptical 
ifterbody with minor 
axis along z-direction 
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This completes the description of the input deck.    For a new case,  a total 

of Zl + 5IPTS cards are required for inp'jt,  where IPTS is the number of data 

points on the initial data ray.    For a restart of a previous problem,   a total 

number of 6 data cards are required. 
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A.3 OUTPUT 

The first page of output from the program begins with the run 

number centered under the heading.    Following this come in order:   one 

line of comment (HEAD),  the option controls,   such as NSPEC,  MODEL. , 

etc. ,  the free stream conditions,  the free stream compositions and the 

input body description data.    This first page is included initially,   and also 

if the present run is a restart of a previously incomplete case. 

Following the initial page of output the values of the point data 

for a plane of output is usually printed next.    The plane printed is the initial 

plane if the input control constant N PRINT      1.    Otherwise,   every MODPLN 

planes are printed out,  where MODPLN is an input constant.    The output 

is arranged by rings starting at the body and ending with the points on 

the shock surface in the present plane.    The form of the output for each 

point in the plane is shown in Table A-II. The printout for each plane is 

preceded by a heading (written by subroutine OUTPUT) labeling the form 

of the following data,    Note that the points with the same index I are said 

to lie on a "ring" and points with the same index N are said to lie on a 

"ray".    Although these were circular rings and straight line rays in the 

initial plane,  they distort somewhat as the computations proceed down- 

stream.    However the names ring and ray are maintained for simplicity 

here. 

Other output can be obtained if any or all of the input control 

constants ISW1,  ISW2, ,  ISW6 are equal to 1.    In this case internal 

output statements print out certain datu within the various subroutines, 

These are helpful in determining the cause of any problems which may 

develop during a run. While the forms of the.';.' optional outputs will not 

be given here, they are easily obtained by reference to the appropriate 

FORTRAN listing. Each optional output is preceded by the subroutine 

name of the subroutine from which it was written. Following is a list of 

the subroutines which have internal dumps and the control constants which 
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initiate their use.    Caution should be exercised when using the internal 

dumps as they generate large amounts of output in a comparatively short 

time. 

MCMAIN,  ROTATE 

POINT 

FIELD,  SECT,   POINT B 

CDELTA.   FLOW,  SETUP,  SHOCK 

(not used) 

BODY,  SECT B 

1. ISW1  - ] Controls 

2. ISW2 = 1 Controls 

3. 15 W 3 = J Controls 

4. ISW4 = 1 Controls 

5. ISW5 = Controls 

6. ISW6 - ] Controls 

Table A-H 

FORM OF OUTPUT FOR EACH PLANE 

RESULTS FOR N PLANE = (N PLANE) 

1 2 3 

COLUMN NUMBER 

4                        5 6 7 8 

ROW 

NO. 

1 

2 

3 

4* 

RING NO. RAY NO. 

X Y Z R OMEGA 

(DEGREES) 

THETA 

(DEGREES) 

PSI 

(DEGREES) 

MOLECULAR 

WEIGHT 

PRESSURE VELOCITY DENSITY TEMPERATURE SPECIFIC 
HEAT 

RATIO 

TOTAL 

ENTHALPY 
MACH 
ANGLE 

(DEGREES) 

MACH 

NUMBER 

ALPHA  1 ALPHA 2 ALPHA 3 

'NOTE:  LINE t APPEARS 0NLv WHEN THE POINT BEING OUTPUT IS ON THE SHOCK 
(i.e. THE MAXIMUM RING NUMBER) 
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A. 4 DATA STORE 

The data for a plane of points are stored in a large data matrix 

Al (25,   30,   15) which allows for up to 25 rings of points with 30 points 

(rays) per ring and 15 functions per point.    For program simplicity, successive 

blocks of 7500 storage locations have been equivalenced to a named function 

which in turn is used throughout the program in place of the large matrix Al 

whenever a certain one of the functions stored in Al  is required.    Following 

is a list of these new MNEMONICS giving their position in Al  and their 

significance 

Function Nmemonic 

1 VY(25, 30) 

2 VZ(25, 30) 

3 VP(25, 30) 

4 VTHETA(25, 30) 

5 VPSI(25, 30) 

6 VQ(25, 30) 

7 VBETA(25, 30) 

8 VF(25, 30) 

9 VGAMMA(25, 30) 

10 VMW(25, 30) 

11 VRHO(25, 30) 

11 VDSTL(25, 30) 

13 VX(25, 30) 

14 VR(25, 30) 

15 VOMEGA(25, 30) 

A. 4. 1 Program Stops 

Starting 
(Position in Al) Definition 

1) Y-coordinate 

2) Z-coordinate 

3) pressure 

4) flow angle, Scv. Fig.   1 

5) flow angle, See Fig.   1 

6) velocity 

7) Mach angle 

8) not used for frozen solution 

9) specific heat ratio 

10) Molecular Weight 

11) Density 

12) distance along streamline 

13) X-coordinate 

14) Polar RADIUS 

1 5) Polar Angle 

When an error (other than Fortran) occurs within the program 

the program stops with an appropriate error message and full octal core 

dump.    The error message refers back to the statement number of tine 

statement and the subroutine in which the error occurs.    In most cases the 

error is self explanatory. 

Al 1, 1, 

Al 1, 1, 

Al 1, 1, 

Al 1, 1, 

Al 1, 1, 

Al 1, 1, 

Al 1, 1, 

Al 1, 1, 

Al 1, 1, 

Al 1, 1, 

Al 1, 1, 

Al 1 1, 

Al 1, 1, 

Al 1 1, 

Al 1, 1, 
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A. 5 DISCUSSION OF INDIVIDUAL SUBROUTINES 

A detailed synopsis of the main program and the individual 

subroutines is presented in the present section in order to point out 

techniques and procedures which have not previously been discussed 

elsewhere in the report. 

A. 5. 1 MCMAIN 

The main program controls the overall logic of the whole 

integration scheme,  by first locating planes of symmetry and then shifting 

from one point to another throughout the initial data plane in order to compute 

new data points in the next plane.    The data is arranged so that    N data 

points lie along I rings from the body to the shock,   N   being constant for 
all I.    Starting on the expansion side of the body at a point located on the 

shock (the Ith ring) in the plane of symmetry ( A/= l)A/new shock points in 

the next data plane are successively computed.    Control is then shifted to 

the ring of body points.    After N new body points are computed,   rings of 

field points between the body and the shock are computed sequentially.    As 

the calculations progress,   data points on the new data plane are written 

over those in the initial plane which are no longer needed.    In this way,   as 

much storage space as possible is saved,   since no more than one surface 

need be stored at a time. 
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When the ring of shock points is again reached,   two options are 

possible.    If a control parameter called  IADD is not  O,  a new ring of field 

points corresponding to the streamlines through the shock points is added 

in the new data plane,   otherwise the computation of new points is stopped. 

In this way,  as the shock layer grows along the body,   the mesh size 

through the layer can be maintained fairly uniform without resorting to 

interpolation procedures in order to add new points to the field.    Figure  27 

shows some typical streamlines that would be added at the shock in a plane 

of symmetry.    If a new ring of field points is added at the shock,  the ring 

of shock points in the new data plane is indexed up to J + 1   and this data 

plane then becomes a new initial plane from which another plane can be 

calculated.    New planes are calculated in this manner,   until either a 

maximum number of planes have been determined,   or a maximum X 

coordinate is reached. 

The main program also has the option of dropping whole rings 

of data points whenever desired.    Presently this is accomplished by first 

testing whether the total number of rings   J    is equal to the maximum 

number allowable IPTMAX,   an input constant to the program.    If J" equals 

IPTM.AX,  and the mesh spacing near the shock is such that a new ring of 

shock points would be added in tha next data plane   (agai.      in order to keep 

mesh spacings fairly "niform)   then,   every other ring of field points between 

the body and the shock is dropped from the computation.     This technique 

takes advantage of the fact that since the calculations proceed along the 

x-axis and the flow gradients decrease,   less detail is required to completely 

specify the flow field.    Hence,   the overall computation procedure can be 

drastically speeded up -- both from the points of view of having now fewer 

points to calculate,   and having also larger mesh widths in the initial data 

plane,   which in turn allow for larger axial step sizes   A# .    For many 

problems it may be desirable to drop rings other than these throughout 

the flow field.    This is especially true for some bodies at high angles-of- 

attack when the spacings between rings near the bocy on the compression 

side may tend to be small.    By checking spacings between the rings in say 

the plane of symmetry on the compression side of the body,   any specified 

rings can be dropped from the procedure. 
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MCMAIN calls subroutines   OUTPUT,    STOP,    STEP,    FIT, 

BODY,    FIELD and SHOCK     in that order.    The function of each of these 

routines is given below.    Since none of the actual computations are per- 

formed in MCMAIN,   only slight changes to account for any extra functions 

which are added will be required in order to include different thermo- 

chemical models in the program. 

A. 5. 2 INPUT 

This subroutine reads all the input data that is required by the 

program from a tape where it had previously been written in the proper 

order and format.    INPUT  has essentially two separate functions, 

depending upon what data is read from the tape.    If the data is that 

obtained from a blunt body solution ale ig one line only,  it is first non- 

dimensionalized using the methods given in Paragraph A. 3,   and then trans- 

ferred to several different azimuthal planes using the fact that the initial 

data should be axisymmetric.    In this case,   the input data is also written 

on BCD output tape for checking purposes. 

If the data is that read from a binary tape  (auxiliary tape 2) 

which has previously been written by the program  (see subroutine STOP) 

it then represents a continuation of a previously run problem and is 

already in the form    necessary for use by the program.    Hence,   control 

is transferred back to MCMAIN immediately. 

The initial point data thus acquired by INPUT is stored in a 

common three-dimensional array labeled Al.    Any change in the thermo- 

chemical model would be reflected in a corresponding increase in the size 

of Al in storage.    The correspondence between the elements of Al   and 

the nomenclature used in the program is given in Paragraph A. 4.    Calls 

SMALLH and PAUSE. 

A. 5. 3 STEP 

The STEP size    Ax>   between successive data planes normal to 

the x-axis  is a function of the spacing of the points on the base plane,   the 

magnitude and direction of the velocity field,   and the speed of sound 

throughout the field.    Here,    Ax   is chosen so that the Mach forecone from 

any new point intersects the base plane in such a manner that its domain 

141 



of dependence does not contain any initial points adjacent to the original 

bare point.    This can in general be assured by taking 

A X  <    D/ST ( cos (p^ * 0„in )/*<n/imM ) (A-4? 

where DIST  is the minimum mesh point spacing,   fi \s the maximum 

Mach angle and    <f> is the maximum angle which the velocity vector 

makes with the x-axis.    Usually,  however,   it will not be necessary to 

check every point in the initial plane in order to satisfy (A-4).    In the present 

version of STEP,   only points near the body and the shock in the geometrical 

planes of symmetry are checked in order to determine    by, .      &% as 

obtained from (A-4) is then multiplied by an input constant (CONST) to 

yield the final va*ue of   AX> For problems where the maximum values 

of the Mach angle and flow angle are expected off the planes of symmetry 

(e.g. ,  an ellipsoidal body at angle of attack),   CONST1  can be appropriately 

adjusted so that the computation can proceed. 

Another function of STEP is to test the spacing of data points 

near the shock surface to determine whether or not a new str< amline will 

be added at the shock.    If new streamlines are required,  the test constant 

IADD  (see   MAIN)   is set equal to one -- otherwise,  IADD equals zero. 

A. 5. 4 FIT And   LSTSQ 

Interpolating surface fits through nine initial data points are 

obtained in this subroutine along the lines  discussed in Step 1   of Paragraph 

3.3.2.   The functions    fit    are the pressure,   velocity and two flow angles. 

Since the flow angles 9   and  ^   vary considerably around a given body 

(e. g. ,   at any x-locaticn for an axisymmetric flow,    6 varies from a 

maximum along the  i^-axis,  to zero along the   2-axis)  a transformation 

to new spherical angles ai,   x-  is first performed.    The justification for 

for this lies somewhat in the fact that for many three-dimensional problems 

considered,   the flow angle  to will vary mainly with one of the independent 

variables,   while   X,    will vary mainly with the other.    The relationship 

between the angles  uy, *   and the angles   6   ,   <p   is shown in Figure (A-4). 
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\ 

Figure A-4 6, <f TO u)tjL  COORDINATE TRANSFORMATION 
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The independent variables presently used in the fitting technique 

are the polar coordinates ( r ,fl) in the yj-plane.    Here, 

fl » tan "(i) (A-5) 

is the angle between the y-axis and the point.    While these coordinates 

are generally best for most "rounded" bodies,(e.g. ,  axisymmetric or 

ellipses of moderate eccentricities),for bodies with locally two dimensional 

regions (e.g. , a "fiat" ellipse) perhaps a combination of cartesian 

coordinates (y, y) over the flat portion and polar coordinates (r> ,TL ) over 

the rounded portions would be better.    In this case, the focal point of the 

ellipse would be chosen as the center of the (y, j,) coordinate system. 

This can better be determined after gaining more experience with the 

program.    Call HETA,  SIMSOL. 

A. 5. 5 FIELD (IP.NP) 

Given an initial field point (IP, NP), the step size Ax   and the 

results from subroutine FIT,  the FIELD subroutine calculates the 

coordinates and flow properties at a new field point.    To do this,   subroutine 

POINT,  STREAM,  SECT,  INTPLT and SETUP are used throughout an 

iteration loop to converge the solution to second order in the step size, 

along the lines proposed in Paragraph 3. 3. 2. 

As an error check in the modified Euler iteration scheme,  a 

limit of NITER cycles is set on the looping.    If the convergence test on pressure 

F    -£-  < 0.00001 ,m) (A-6) 

is not satisfied,   within these NITER cycles,   an error statement is written 

off-line and control is returned to the main program.    Calls SIMSOL,    INTPLT, 

POINT,  STREAM,   POINTB,  SCKFN,  SHIFT,  SECT,  SETUP. 

A. 5. 6 BODY (IP, NP) 

Given an initial body point (IP,NP),  the BODY subroutine 

calculates the flow properties at a point where the body streamline through 

(IP, NP) meets the next data plane.    To accomplish this,   BODY calls 

exactly the same subroutines as FIELD plus two more given the mnemonics 

BODYFN and SECTB.    The procedure is essentially that given in Paragraph 
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3.3,3, where now, two iteration loops are required in order to converge 

the solution to second order in the step size. 

The inner loop uses Newton iteration to converge the flow angles 

6 and </> such that the boundary condition of flow tangency at the surface is 

solved with the absolute limits 

0«>)_0(n-»   <   w-8 (A-7) 

and 

<p(n)- i/>(n-f) < tu'* (A-8) 

If either of the Equations (A-7) and (A-8) is not satisfied within 20 cycles an 

error statement is again printed off-line and the computations allowed to 

continue. 

The outer iteration is again a modified Euler type on pressure 

and contains the same error checks and convergence criterion as does 

subroutine FIELD. 

A. 5. 7 SHOCK (IP.NP) 

Given an initial shock point (IP,NP), this bubroutine calculates 

the coordinates,  flow properties and direction cosines of the shock normal 

at a new point on the shock surface in the next data plane.    The method is 
that given in Paragraph 3. 3.4.    In the process,  SHOCK uses subroutines PLOW, 

CDELTA and SETUP,  whose various functions are explained below,   to 

converge the solution to again,   second order in the step size.    Here again, 

the convergence tests on pressure are the same as those used in FIELD 

and BODY with the appropriate error statement included.    Calls SHIFT, 

PAUSE,   POINT. 

A. 5. 8 INTPLT 

Given the cartesian coordinates (y, ^ ) of a point P in the base 

plane,  INTPLT calculates its polar coordinates (r,n) (See Equation (A-l)) 

and uses these in the equations defined by FIT in order to determine 

pressure, velocity and Mow angles 9 and fat P.      O and  f are obtained 

from u) and % (the actual angles fit) by using the inverse transformations 

(See Figure (A-4). 
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\fi = tan'*'(tan* sin a>) (A-9) 

and 

0 = tun''  (cotcjJstn t/l) (A-10) 

CALLS HETA 

A. 5.9 STREAM 

The compatibility equations written along the streamline are 

solved in STREAM using in this case,  modified Euler integration.    For 

equilibrium and frozen flow, this same integration technique can be used. 

However,  for nonequilibrium flow a more accurate technique using the 

methods discussed in Paragraph 3. 3. 2 would require an entirely new 

STREAM routine.    Calls PAUSE. 
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A. 5. 10       SECT 

Given the flow properties at the new point and the bicharacteristic 

parametric angle S, this subroutine solves for the coordinates of the new 

base point in the initial plane in the manner indicated in Step 3 of Paragraph 

3.3.?. 

A. 5. 11       SETUP 

In this subroutine the coefficients of the compatibility equations 

written along the bicharacteristics are obtained in the manner indicated 

in Step 5 of Paragraph 3. 3. 2.    For nonequilibrium flow,  the only change 

required here would be to add the term    -s^Jit -»*• Alt' to the calcul- 

ations along the bicharacteristic   i .    Calls HETA. 

\ A. 5. 12        SECTB 
\ 

In SECTB,  the new body point is located as the intersection of 
| 

the plane containing the normal to the body and the streamline through the 

initial body point with the equation of the body surface and the next plane. 

Since the equation of the body surface usually changes for every problem, 

the equations are solved using a second order Newton process.    Calls 

| BDYFN,  PAUSE. 

A. 5. 13       BODYFN 

The equation of the body 

B(x,,c/, £) -" O 

and the direction numbers of the body normals are supplied by BODYFN, 
I 

which must be rewritten if a sphere cone is not desired.    Here the conical 

afterbody may be circular or elliptical as specified on input.    The body 

functions are written with respect to a body centered coordinate syste.m 

with the x-axis as the body axis.    Eventually,   BODYFN should be replaced 

by a general routine which allows for either an analytical description or a 
I 

numerical surface fitting technique to describe the body.. 
f 
I A. 5. 14       SCKFN 
I 

Three adjacent shock points on the shock surface in the initial 

plane are fit with an exact quadratic fit in the polar coordinates ( r,fl) by 

SCKFN.    Calls HETA. 
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A. 5.15        CDELTA 

This subroutine locates three bicharacteristics passing back 

from the new shock point to the initial plane,  using the method presented 

in Step 4 of Paragraph 3. 3. 4.    A Newton-Raphsen iteration scheme is used to 

solve for the base coo.-dinates of each of two bicharacteristics imbeded in 

the shock surface.    Then,  a third bicharacteristic whose direction is 

represented by the average of these   wo is located.    CDELTA also calls 

INTPL.T in order to determine the base point flow properties.    Calls 

SCKFN,  POINTB,  SIMSOL,   HETA,   INTPLT. 

A. 5. 16       STOP 

Subroutine STOP has two basic functions.    First,  a logical 

binary record containing all the data which would be necessary to restart 

tiie computations is written for every /V planes,  where V is an input 

constant to the program.    Then,   if either a given maximum number of 

planes have been computed,   or a given maximum X-coordinate has been 

reached,  the computational procedure is halted,  otherwise,   control is 

transferred back to MCMAIN. 

A. 5. 17       OUTPUT 

Output data from the program is written for every -A/ planes, 

where here, A/ is the same input constant which was used in STOP. 

OUTPUT can easily be changed to provide any output quantity desired, 

without affecting the reaminder of the program.    The form of the output 

obtained at each point in the plane in the present version of OUTPUT,   is 

described in Paragraph A. 3.    OUTPUT calls POINT which prints out the 

point data for each point in the plane. 
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A. 5. 1 8       SIMSOL 

Any set of vl linear inhomogeneous equations in 71    unknowns 

can be solved in SIMSOL.    If the determinant of the coefficients vanishes, 

an appropriate error statement is printed out. 

A. 5. 19       DIVIDE 

DIVIDE is used to drop every other ring of d^ta points from the 

shock to the body. 

A. 5. 20       ROTATE 

ROTATE is used to rotate the coordinates such that all the data 

points lie in a plane x = constant.    The option which utilizes this subroutine 

is not presently working properly.    Calls HETA. 

A. 5.21       POINT 

POINT it; used to write out the data at a given data point.    The 

form of this output is given in Paragraph A. 3. 

A. 5.22       POINTB 

POINTB is used to provide extra output data at the base of each 

bicharacteristic.    It is utilized mainly for debugging purposes. 

A. 5. 23       PAUSE 

If an error occurs which would make it impossible to continue 

the procedure,   an appropriate error statement is written by PAUSE,   and 

the program is terminated. 

A. 5. 24       HETA 

Determine an angle 6   ,   in radians (~ "jr -   0 ^ "J ) when given 

the opposite and adjacent sides of a right triangle. 
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A. 5. 25       FLOW 

FLOW is used to compute the conditions behind an oblique shock 

given the shock angle,  ö"   ,   and the free-stream conditions at each point. 

For all thermodynamic options the computations utilize a Newton-Raphson 

procedure to match the total enthalpy behind the shock with that of the free 

stream.    FLOW calls SMALLH and PAUSE. 

A. 5. 26       SMALLH 

SMALLH is presently used to provide harmonic oscillator approx- 

imations to the species thermodynamic functions enthalpy, A« ,   specific heat, 

Cft ,   and free energy^u.   .     The harmonic oscillator data is contained within 

the program in the form of data statements with a maximum of 8 species 

allowed.     These are presently,  O,   N,   E",   A,  02>   N      NO,   NO + ,   in that 

order.    One data card is read in INPUT in order to choose the proper data 

for the thermochemical system being run.    A description of this card is 

included in the section on the discussion of the program input data. 

A. 5. 27      STMN 

Control program which is used to read run label and control the 

overall execution of the program.    STMN calls INPUT and MCMAIN. 

A. 5. 28       SHIFT 

SHIFT is used to shift the point data from location II  to 

location 12. 

A. 5. 29       COMMON DECK 

Must be used with all subroutines except SIMSOL,   HETA and 

PAUSE. 
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A.6 SYMBOL DEFINITION 

Following is a list of symbols which are vised throughout the program. 

Arrangement is in the order the variable appears for each labeled common 

block followed by the list of special variables used within each subroutine. 

The asterisk designates input quantities. 

Mnemonic Variation Symbol 

COMMN/FREE 

Comment 

'PO PRES 

RHOO - DENS 

:':U0  -  VEL 

::WMW0 - WGHT 

"TO =  TEMP 

VHINF 

TINF 

PAM 

RHAM 

UAM 

WTAM 

VDIML 

*R0 

BIG AM 

U 

T' 

H 

P. 

R 

Free-stream pressure in dynes/cm 
or lb/ft2 

3 
Free-stream density in grams/cm 
or slugs /ft* 

Free-stream velocity in cm/sec or 
ft/sec 

Free-stream molecular weight in 
grams lbs. 

-0—i or    :  mole mole 

Free-stream temperature in °K 

Free-stream total enthalpy normalized 
by RTJ,/MW: 

Free-stream temperature normalized 

by TL 

Free-stream pressure normalized 

by pL u'J 
Free-stream density normalized by 

Free-stream velocity normalized by 
U' 

90 

Free-stream molecular weight 
normalized by  MW^ 

Reference length in cm or ft 

TT   ■ i r- *     .    ergs ft. lb Universal Gas constant  r~«pr \—. mole-Tt     mole-*/? 

Free-stream specific heat ratio 
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Mnemonic Variation Symbol Comment 

Jo 

XLMBDA      TSCALE A 

:'EPSAM(K) tm 

-EPSINF(K) 

:,;GAMAM(J) 4 
= GAMINF(J) 

COMMON/THERMO 

HJO (J) 

H(J) h. 

FJ(J) f. 

CP(J) C^ 

EPSEQ(K) €mi 

NATOMS(J) N, 

Defined as MW.' Uj 
R  rj 

Free-stream vibrational energy for 
kth   vibrator normalized by R'T^/MW^, 

Free-stream concentration of Jth 
species normalized by Y.   f 

oo ; 
j J 

Energy of formation of jth species 
nondimensionalized by R 'TJ/MWJZ, 

Enthalpy of jth species nondimension- 
alized by R'Tj/MwJ, 

Free-energy of jth species non- 
dimensionalized by RT^/MWJ 

Specific heat of jth species non- 
dimensionalized by R'/MW^ 

Equilibrium vibrational energy of 
kth vibrator normalized by ^'TJ/MWJ 

Number of atoms in species   j. 

COMMON/ DATA3D 

A1(I,J,K) 

ALF2(N) 

ALF3(N) 

ALFL2(N) 

ALFL3(N) 

Storage matrix for point data 
I =   ring number,J -   ray number, 
K - variable number 

Direction cosine of shock normal for 
shock point (N) along y-axis 

Direction cosine of shock normal for 
shock point (N) along z-axis 

ALFZ(N) for previous shock point (N) 

ALF3(N) for previous shock point (N) 

GAMMAI (I,   J) Concentration for ring I and species J 

EPSI (I,   K) Vibrational energy for ring I and 
vibrator K 
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Mnemonic. Variation Symbol Comment 

COMMON/BOSS3D 

AM(9, 10) 

ALPHAL 

ALPHAN 

BETAMX 

CCP 

CSIGMA 

SSIGMA 

CPSIFS 

SPSIFS 

CTHEFS 

STHEFS 

"CONSTl 

:SCONST2 

DALPHA 

DLMAX 

DXMIN 

":IPTS 

ICONST(IO) 

"iPTMAX 

Matrix used for storing coefficients 
of linear equations to be solved 
simultaneously 

Angle between present x-axis and 
body axis when plane rotation is used 

Angle between normal to rotated 
plane and body axis 

Maximum Mach angle 

Specific heat ratio (nondimensional) 

Cosine of shock angle 

Sine of shock angle 

Cosine of free stream flow angle 

Sine of free stream flow angle 

Cosine of free stream flow angle 

Sine of free stream flow angle 

Input constant used to regulate 
step size, 

Input constant used to decrease step 
step size when new field points are 
added at the shock 

Angle of rotation of data plane when 
coordinate rotation is employed 

Not used 

Minimum step size allowed 

Number of data rings for present step 

Integer matrix (not used) 

Maximum number of data rings 
allowed 
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Mnemonic Variation Symbol Comment 

Integer test constants used to control 

internal program print out 

ITAPE 

*MDELAY 

"MODPLN 

VMODEL 

"NO 

NEWRUN 

:,:NP180 

*NPCMAX 

"NPLOUT 

;:NPRINT 

:CNROTAT 

*NPTS 

NPTMAX 

NPLANE 

"NR 

Integer Control constant (see input) 

Integer constant always  set = 3 
on input 

See description in input section 

See description in input section 

See description in input section 

Control constant used to test whether 
or not a subroutine has been 
previoui ly entered 

See description in input section 

See description in input section 

See description in input section 

See description in input section 

See description in input section 

See description in input section 

Not used 

Number of current integration plane 

See description in input section 
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Mnemonic Variation Symbol Comment 

NRCORD 

:':NVIB 

'"NSPEC 

"PGRAD 

PP 

QQ 

"SIGMA 

"SIGMA 1 

THETMN 

VARIB 1,(10) 

X0 

Y0 

"XMAX 

::NOSPEC(N) 

COMMON/AFT3D 

A2(J,  M,  N) 

AMUB(JJ) 

AMUT3 

AMUAV 

ALFT1 
ALFT2 
ALFT3 

Not used 

See description in input section 

See description in input section 

See description in input section 

Not used 

Not used 

Shock angle 

Shock angle for upstream shock point 

Minimum flow angle 

Real ma'rix (not used) 

x-coordinate of present data plane 

y-coordinate of last shock point on 
present data plane 

Maximum x-coordina*^ calculated 

See description in input section 

Matrix used in setting up quadratic 
surface fits. 

Mach angle at bicharacteristic (JJ) 
base point. 

Mach angle at new point 

Average Mach angle along bicharacter- 
istic 

Temporary storage locations for 
direction cosines to shock normal 
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Mnemonic Variation Symbol Comment 

AT32(K) Flow angle,   6    ,   as computed by 
the ( K ) set of bicharacteristics 

AT32C Average pressure at new shock 
point or average flow angle,   6  , 
at new field point 

AT33(K) Flow angle, f ,   as computed by fae 
(K) set of bicharacteristics. 

AT33C Average flow angle,  f  ,   at new 
point 

AT31(K) Pressure as computed by the (K) 
set of bicharacteristics 

AT31C Average pressure at new point 

AT3T(I,K) Storage matrix for pressure (l--\) 
for flow angle   0    (1=2) and for flow 
angle   V    (1=3) as computed from the 
(K) set of bicharacteristics 

AVE(J) AVE(J) is equal to value of function 
(J) for middle point of nine points 
fit. 

AMUBT(J,K) Mach angle for bicharacteristic (J) 
in the (K) set of bicharacteristics 

AL.F1 ett Direction cosine of normal to shock 
with respect to x-axis 

BO Body function B(x, y, z) = 0 solved 
at point (x, y, 7.) gives remainder BO. 

CDEL <44s\S) Cosine of parametric angle 6* at 
new point 

SDEL 4vrv(8) Sine of parametric angle 6  at new 
point 

CDELB /C<Ht/(6fl) Cosine of parametric angle  8   at 
bicharacteristic base point 

SDELB ^inj(8g) Sine of parametric angle S at bi- 
characteristic base point 
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Mnemonic Variation Symbol 

CAMU yCM^{/U.) 

SAMU 

CAMUB 

SAMUB 

CTHET 

STHET 

CTHETB 

STHETB 

CTHETO 

STHETO 

CPSIO 

SPSIO 

C01 

C02 

C03 

COEFN(N, J) 

DELTA(J) 

•CO*/ (6) 

Comment 

Cosine of Mach angle 

Sine of Mach angle 

Cosine of Mach angle at bicharacter- 
istic base point 

Sine of Mach angle at bicharacteristic 
base point 

Cosine of flow angle   0 

Sine of flow angle   Ö 

Cosine of flow angle  €   at bicharacter- 
istic base point 

Sine of flow angle   0   at bicharacter- 
istic base point 

Cosine of flow angle   0O 

Sine of flow angle  0, 

Cosine of flow angle   ^e 

Sine of flow angle   HJ
C 

Direction number of body slope with 
respect to x-axis at initial body point 

Direction number of body slope with 
respect to y-axis at initial body point 

Direction number of body  slope with 
respect to y-axis at initial body point 

Direction number of body slope with 
respect to x^   y-and z-axis respectively 
for new body point 

Coefficients used in interpolating 
surface fits for function J. 

Parametric angle 8   for bicharacter- 
istic J. 
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Mnemonic Variation       Symbol 

DELTAB(J) Sb 

DELTBT(J, K) 

DERFN(M.N) 

DADX 
DADY 
DADZ 

DADN 

DBDXAV 
DBDYAV 
DBDZAV 

DALF2 

DALF3 

DELTAV 

DL(J) 

DXNEXT 

DXDN 
DYDN 
DZDN 

Comments 

Parametric angle (i'b   ) at base 
point of bicharacteristic J. 

Parametric angle for bicharacter- 
istic    (J) in set of bicharacteristics 
(K). 

not used 

Derivative of speed of sound with 
respect to x,   y and z axes respec- 
tively 

Derivative of speed of sound with 
respect to N-direction 

Average derivative    of body function 
with respect to the x,   y and z axes 
respectively 

Change in direction cosine of shock 
normal with respect to y-axis. 

Change in direction cosine of shock 
normal with respect to z-axis 

Average parametric angle along a 
bicharacteristic 

Length of bicharacteristic (J) 

Step size along x-axis between 
successive data planes 

Partial derivatives of x,   y and z 
coordinates with respect to the 
N-axis respectively. 

Coeffi   ients used to compute 
Äfl. AL , M., äJL.  , £2-      and HL 
du ' df '  Be       Bit        <9y <9* 
from simultaneous solution of 
equations of the form 

e-ö, = ae 

(see Subroutine SETUP) 
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Mnemonic Variation Symbol 
Comments 

ETLAST 

EPLAST 

F(J) 

FNORM 

FBT(3, 3) 

FB(3) 

FUNCT(J) 

IADD 

IFIT 

IDP 

NDP 

NFUNCT 

NOPT 

NOPTS 

N O FN 

Basis functions (J) used in inter- 
polating polynomial 

Normalizing factor for unit normal 
to body surface at a point on body 

not used for frozen solution 

not used for frozen solution 

Solution for function (J) obtained 
from interpolation using polynomial 
surface fits. 

IADD = 1  if new ring of field points 
is to be added at rhock IADD = 0 
otherwise 

Number of rings used around center 
ring in polynomial fit.    IFIT = 1 
always 

Number of rings used in surface 
fitting procedure.    IDP = 3 always. 

Number of rays used in surface 
fitting procedure.    NDP = 3 always. 

Number of functions fit.    NFUNCT = 8 
always 

Number of points included in poly- 
nomial surface fit.    NOPT = 9 
always 

NOPT  + 1 

Constant defining function presently 
uted    when a large matrix contains 
several different functions in 
sequence (i. e.  Al) 
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Mnemonic Variation Symbol 

NFIT 

NN 

NO CHAR 

PSIB(J) 

PSIBT(J.K) 

K 

Comments 

Number of rays used around center 
ray in surface fitting procedure 

Iteration    counter 

Number of bicharacteristics used 
in unit mesh procedure 

Flow angle at base of bicharacteristic 
(J). 

Flow angle    ^   at base of bicharacter- 
istic (J) for set of bicharacteristics 
(K). 

PSIAV 

PPP 

PLAST 

PB(J) 

PI 

PPB 

OMEGAB 

Ql 

Q232 

QP 

QQB 

QS 

QB(J) 

tOt 

Average flow angle   f    along a 
bicharacteristic 

not used 

Last value of pressure obtained in 
iteration procedure 

Pressure at base point of bicharacter- 
istic (J). 

not used 

not used 

Polar angle of bicharacteristic base 
point with respect to y-axis. 

Velocity at initial point 

Not us^d 

Not used 

Velocity at bicharacteristic base 
point. 

Not used 

Velocity at base point of bicharacter- 
istic(J,). 
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Mnemonic Variation Symbol Comments 

RB /t. 

R1AV 
R2AV 
R3AV 

RT1 
RT2 
RT3 

RR 

SSB(J) 

SST3 

SSA1 

SS 

SCALE(J) 

THETAB(J) 

TH3T(J,K) 

TAJ 

THETAV 

Radius from origin to bicharacter- 
istic base point 

Direction numbers of line of inter- 
section of plane tangent to shock 
surface and plane normal     to shock 
surface containing velocity vector 
behind the shock at the initial shock 
point. 

Average line in shock surface for 
locating new shock point defined 
by R1AV = R01  4 RT1  etr. 

Direction numbers of line of inter- 
section of plane tangent to shock 
surface and plane normal to shock 
surface containing velocity vector 
behind the shock at the new shock 
point. 

not used 

Speed of sound at base point of 
bicharacteristic (J) 

Speed of sound at new data point 

Speed of sound at initial data point 

Speed of sound 

Scaling factor for polynomial fit 
to function (J). 

Flow angle, 9   ,   at bicharacteristic 
(J) base point 

Flow angle, &   ,   at base of bichar- 
acteristic (J) for set of bicharacter- 
istics (K). 

Temperature at initial data point 

Average flow angle,  6  ,   along a 
bicharacteristic. 
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Mnemonic Variation Symbol Comments 

TAT3 

UAVE 

VAVE 

WAVE 

US 

VS 

WS 

XB(J) 

XP(4) 

XPT 
XNEXT 

YB(J) 

YP(4) 

YPT 

ZB(J) 

ZP(4) 

GAMB(J) 

GAMBT(J.K) 

1 

a 

u. (-> 

*rt c-> 

<uf, (-) 

la: 

Temperature at new data point 

Average x-component of velocity 

Average y-component of velocity 

Average z-component of velocity 

x-component of velocity behind  shock 

y-component of velocity behind shock 

z-component of velocity behind shock 

x-component of base point for bi- 
characteristic(X) • 

not used 

x-coordinate of new point when plane 
rotation is not employed 

y-coordinate of base point for 
bicharacteristic (J). 

not used 

not used 

z-coordinate of base point for 
bicharacteristic (J) 

not used 

Specific heat ratio at base point 
bichar lcteristic(j). 

Specific heat ratio at base point 
of bicharacteristic (J) for set of 
bicharacteristics (K). 

COMMON LOOP 

NITER Maximum number of iterations 
allowed 
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Mnemonic Variation Symbol Comments 

ERROR = CHI Iteration limit -   -v 1,0 x 10      usually 

COMMON/TTTAPE 

NREC4 

NREC3 

COMMON/S TIP N 

Number of records on binary tape 4. 

Number of records on binary tape 3. 

CSST 

COMMON/BDYDAT 

Defined in input section 

RBDY 

XBDY1 

XBDY2 

XBDY3 

YBDY1 

YBDY2 

YBDY3 

Spherical cap nose radius in cm or ft. 

x-coordinate of beginning of conical 
afterbody portion of body. 

x-coordinate of beginning of expan- 
sion side for elliptical afterbody 

x-coordinate of beginning of com- 
pression side for elliptical afterbody 

y-coordinate of beginning of conical 
afterbody portion of body 

y-coordinate of beginning of expan- 
sion side for elliptical afterbody 

y-coordinate of beginning of com- 
pression side for elliptical afterbody 

SLOPEl 

'SLOPE 2 

SLOPE3 

"BDYTYP  • ' 

COMMON/OUTPNT/ 
IPOINP 

Defined in input section 

not used 
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Mnemonic Variation Symbol Comment 

SUBROUTINE INPUT 

"'ALPHA(I) 

BETA(I) 

CH(I) 

CPP(I) 

CM 

G(I) 

GAMEFF 

GAMMA (I) 

*OMEGA(N) 

P(I) 

*Q(D 

R(I) 

*RHO(I) 

SOUND (I) 

::=T(I) 

2-D flow angle for input point (I) 
(radians) 

Mach angle for input point (I) 

Total enthalpy for input point (I) 

Specific heat ratio for input point (I) 

Mach number 

Not used 

Frozen specific heat ratio 

Frozen specific heat ratio for input 
point (I) 

Azimuthal angle for ray (N) 

Pressure for input point (I) 

Velocity for input point (I) 

Radius for input point   (I) 

Density for input point (I) 

Speed of sound for input point (I) 

Temperature for input point (I) 

SUBROUTINE BODY 

DELT 

Combination of coefficients of 
compatibility equations used to 
eliminate pressure term and obtain 
one equation in two unknown ( 6   , p ) 

Parametric angle,    6     ,   for bicharac 
teristic in normal plane to body at 
nev.  jjoint 
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Mnemonic Variation Symbol Comment 

DFDPSI 

DFDTH 

DGDPSI 

DGDTH 

DENOM 

DTHETA 

DPSI 

FN 

SILAS T 

THLAST 

X 

SUBROUTINE BODYFN 

B 

C1NEW 

C2NEW 

C3NEW 

if 

ay 

de 

Ae 

Partial derivative of function FN with 
respect to flow angle  y 

Partial derivative of function FN with 
respect to flow angle  9 

Partial deviative of function G with 
respect to angle ^ 

Partial derivative of function G with 
respect to flow angle  6 

Denominator for Newton-Raphson 
method in two variables (G and FN) 
in terms of two independent variables 
( e > y ) 

Change of angle  Ö . 

Change of angle H* ■ 

Function representing condition that 
velocity vector is tangent to body 

Function representing combination of 
compatibility equations eliminating 
pressure, -p. 

Previous value of flow angle  W    in 
iteration 

Previous value of flow angle    &     in 
iteration 

X = cos <f 

Body function 

Direction numbers of outward normal 
to body in body oriented coordinates 

Direction numbers of outward normal 
to body in external coordinate system 
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Mnemonic Variation Symbol Comment 

CALF 

SALF 

FFNORM 

SMAJ 

SMIN 

/C&&(ot) Cosine of angle between body axis 
and present external x-axis 

^iov (oc) Sine of angle between body axis and 
present external x-axis 

Norm of direction numbers 

Length of semi-major axis of body 
ellipse 

Length of semi-minor axis of body 
ellipse 

Coordinates of body point with respect 
to body oriented Cartesian system 

Coordinates of body point with respect 
to external coordinate system 

SUBROUTINE CDELTA 

DFNDZ 

Coefficients for quadratic fit to shock 
curve in x - const,   plane 

Coefficients of Mach forecone from 
new shock point 

Partial derivative of function FN 
with respect to y-coordinate 

Partial derivative of function FN 
with  respect to z-coordinate 
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Mnemonic Variation 

DGDY 

DGDZ 

DY 

DZ 

DDY 

DDZ 

FN 

IT = IP 

QAVE 

SSAVE 

YS(N) 

ZS(N) 

Symbol 

9i 

'Y 

di 

Comment 

Partial derivative of function G with 
respect to y-coordinate 

Partial derivative of function G with 
respect to z-coordinate 

Change in y-coordinate along 
bicharacteristics 

Change in z-coordinate along 
bicharacteristics 

Change in y-coordinate of bicharac- 
teristics base point as obtained 
from Newton-Raphson procedure to 
converge the base point location 

Change in z-coordinate of bicharac- 
teristic base point as obtained from 
Newton-Raphson procedure to 
converge the base point location 

Function representing equation of 
Mach forecone 

Function representing difference in 
fitted shock radius and bicharacteristic 
base point radius for Newton-Raphson 
procedure 

New shock point storage location 

Average velocity along bicharacteristic 

Average sound speed along bicharac- 
teristic 

> -coordinate of shock point N. 

y-coordinate of shock point N 

SUBROUTINE DIVIDE 

IIPT Storage index of every other ring of 
field points off body 
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Mnemonic Variation Symbol Comment 

IPTMIN Number of storage data  rings 
remaining after every other  ring 
is dropped 

SUBROUTINE FIELD 

C1AV 

C2AV 

C3AV 

DELXI 

IT 

IP = IK 

NP = IN 

Average direction numbers for 
streamline direction 

Length of a birharacteristic 

Storage index for final field point ring 

Storage index for initial field point 
ring 

Storage index for field point ray 

SUBROUTINE INTPLT 

RFIT 

OMEG } 
Scaled polar coordinates (n,, to   ) of 
bicharacteristic base point to be used 
in evaluating interpolating polynomial 

SUBROUTINE SECTB 

BT 

"1 CPJ 

CP2 

CP3 J 

DELY 

DELZ 

Function representing difference 
between actual body radius and body 
radius computed from present approx- 
imation to body point 

Direction numbers of normal to 
normal plane to body c ontaining 
streamline direction from initial 
body point 

Change in y-coordinate of new body 
point 

Change in z-coordinate of new body 
point 
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Mnemonic Variation Symbol Comment 

FN 

IK 

IP = IT 

NP 

SUBROUTINE SETUP 

AM(J,    1) 

AM(J,    2) 

AM(J,    3) 

DX 
DY  - 
DZ 

AM(J,    4) 

DE LAV 

SDELAV 

C4 

C5 

C6 

C7 

C8 

C9 

CIO 

Function representing normal plane 
to body containing velocity vector 

Storage index for initial body ring 

Storage index for final body ring 
(IP = 1) 

Storage index for ray on which body 
point is located 

Coefficient of pressure in the 
compatibility equation for bicharac- 
teristics (J) 

Coefficient of flow angle, 8 , in the 
compatibility equation for bicharac- 
teristic (J) 

Coefficient of flow angle, V » in the 
compatibility equation for bicharac- 
teristic (J) 

Distance matrices for coordinate 
directions along bicharacteristics 

Coefficient for constant term in the 
compatibility equation for bicharac- 
teristic (J) 

Average parametric angle  cf 
corresponding to bicharacteristic 
curves. 

Sine of DE LAV 

Average coefficients for 
compatibility equations 

D1-D9 

SIBARl 

S2BARJ 

Minors required to solve for 
de 
4X ,  etc.   in EQN  86 

Temporary storage 
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Mnemonic Variation Symbol Comment 

SUBROUTINE SHOCK 

ALFI2 

ALFT3 

ALFT21 

ALFT31 

ALFT22 

ALFT32 

ERRT 

ERROR 

ERROR 1 

IP - IK 

IT 

NP 

Present values of direction cosines 
of normal to shock with respect to 
y and z axis respectively 

Values of ALFT2 and ALFT3 from 
previous iteration 

Values of ALFT21 and ALFT31 from 
previous iteration 

Temporary storage for ERROR as 
interpreted in COMMN/LOOP 

Difference between average pressure 
computed from compatibility 
equations and the pressure computed 
from shock  relations 

Previous value of ERROR from last 
iteration 

Storage index lor initial shock ring 

Storage index for final  shock point 
ring 

Storage index for  ray on which shock 
point is located 

SUBROUTINE STREAM 

DTS 

IK 

IT 

IN 

Q202 

ROINAV 

TLAST 

Change in temperature along stream- 
line 

Storage index for initial point data  rinj 

Storage index for final point ring 

Sic rage  index tor ray on which field 
point or body point is located 

Velocity squared divided by  2 

Inverse of average density along 
streamline 

Initial value of temperature along 
streamline 
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Mnemonic Variation Symbol Comment 

SUBROUTINE STOP 

NSTOP 

NF.ILE 

Integer test constant for stopping 
integration if X  >XMAX   or 
NPLANE   >■ NPLMAX 

Number of data planes  stored on 
binary tape 2 

SUBROUTINE FLOW 

CPAV 

DHDP 

DUN 

ERR 

HT 

HPREV 

PREVP 

QS   COMMON AFT3D 

TIP 

UNAM 

Frozen specific heat behind shock 

Change in total enthalpy divided by 
change in pressure 

Change in velocity component normal 
to shock,  across shock 

Difference between free stream, 
total enthalpy and computed total 
enthalpy across shock 

Total enthalpy behind shock 

Previous value of HT for previous 
iteration 

Previous value of pressure behind 
shock from previous iteration 

Velocity behind shock 

Temperature behind shock 

Free stream velocity component 
normal to shock 

UNIP 

VTIP 

USP 

VSP 

WSP 

Component of velocity behind shock 
in direction normal to shock 

Component of velocity behind shock 
in direction tangent to shock 

x,   y and z velocity components 
upstream of shock 
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Mnemonic Variation Symbol Comment 

US 
I. VS   COMMON AFT3D 

\ 

x,   y and z velocity components 
ac ross shock 

WS 
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A. 7 LOGICAL FLOW DIAGRAMS 

Detailed flow diagrams including all the equations and symbols 

are probably not so valuable as logical charts when the program is written 

in FORTRAN IV as is the case here.    For this reason only the general 

logical flow diagrams are presented with no attempt being made to be 

complete in every detail. 
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fl«JCt£  f Surf )   O*      THg 

8i4n«l«flCT6»i*TiC.   WHOM SHOCK 
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I 
I 
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"*!    f"    -1.L     !J 

; J._ 
|   C Ml'1 '-/ j 

i 

.l 
y 

SUBROUTINE STEP 
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ST<Ofi> 

DATA O*J 

TAPC 
Z. 

■5£7"  ca/uneoc 
COASJT<*AST~  yo 
Z£KO  TO 

'*S7*^^ 

ouTftrr . 
Z?£Jt€£0 FO*t 

Tytf0A7A 

V S£7~ AiSCOAO 
>CoaAST£G   A"0G 
TAP£- Z. £dOAL- 

TO 1 
f' 

A/ ■M xerufiiKj 

i 
<- STOP 

y 

i 
/eer<j*Aj 

i 
V 

w A'Te. 
svfSSAGC. 

fro* 

N 

C*C££O£0 
A/ 

y 

STOP COASSTAWT no 
ST&0 P6oGK*rrt 

1 

^m/PLA*J£ 7Z$r +/+S*sS76£* of^Jc 

^£KC££0£0 

N 

i 
y 

SUBROUTINE STOP 

?.o: 



5T#£An     \ 

     _J  
; COr7/*OT£    7~*/£ 
YM*£4S£ Of dV£#*GC 

/AST£G*Ar£   7>*£ 
<?A/£e<$y SQt/*r/OA/ 
^~<^e T#£ y£LOC/Ty 
A7~ A/£t+/ fo/Asr 

J_ 

I 

corpore O£AJS<TV  \ 
7£./^/y£/e^ 7~f*£, 

/<\7~   AS£iV Po/*/r     I 

 L  

SUBROUTINE STREAM 
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(siMSOL *) 

^OIMWSIöKJ 

kA(LU,Ll.) 
N-KK 

VM, = lMfiy 

L*l 

M>T?   LL±KK+I 

—>® 

GIG - LARGEST   ^NfcfNT 

IN   COLUMN   L 

^P^fURIsl 

OUfiPj 

iiüfgRCHAHß^  ROWS To PUT 

BIG   IM (L,0   POSITION 

CAlCUtAfe   A(N-I,N+|) FROM 

ROW  ßV  A(L,L)( A(L,L)"I 

= 0 

SUBTRACT   Lia Row PROM 

0ACH SUBStQUgMT   MW 

L=Lt| 

(g" 
SUBROUTINE SIMSOL (AK KK, LL) 
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Appendix B 

CALCULATIONS OF FIELD,   BODY,   AND SHOCK POINTS 

j 
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TABLE   B-I 

CALCULATIONS AT A FIELD POINT 

Step Size Ax = 0. 0) 4607 36 

Initial Point Data:   (All Quantities Nondirnensionalized) 

X 

-0.45340951 
JL 

0.75886150 0.55134514 

JL 
0.21346586 0.62946524 

9   (Radians) 
0. 3839265 

V    (Radians) 
0.2978896 

Final Point 

First Second Third Fourth 
Iteration Iteration Iteration Iteration 

X. -0.43880215 -0.43880215 -0.43880215 -0.43880215 

y 0.76503433 0. 7649 3999 0. 76493883 0. 76493885 

} 0.55582996 0.55576114 0.55576062 0.55576064 

1° 0.20518689 0.20505461 0.20505998 0.205059835 

% 0.63728678 0.63545944 0.63556746 0.635562873 

9 0.37413336 0.37405871 0. 37406140 0.37406141 

V 0.28928342 0.28921835 0.28922113 0.28922114 

Convergence Test Criterion 

(»)      (n-0 

Jn) 
£     0.00001 
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TABLE   B-II 

CALCULATIONS AT A BODY POINT 

Step Size Ax = 0.01460736 

Initial Point Data: 

X 
-0.45340951 -0.44568498 0.77194911 

0. 19598220 0. 61962985              -0.2285J .11 0.41459165 

Final Body Point: 

First 
Iteration 

X -0.043880215 

y -0. 44928833 

} 0. 77819028 

f 0.18682411 

? 0.62771747 

9 -0. 22122613 

V 0.40008304 

Second 
Iteration 

-0.043880215 

-0.44929017 

0. 77819325 

0. 18683943 

0.62712205 

-0.22119960 

0.40009536 

Third 
Iteration 

■0.043880215 

■ 0.4492910 

0.77819480 

0.18683876 

0.627113444 

■0.221199 38 

0.40009460 
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TABLE   B-III 

CALCULATIONS AT A SHOCK POINT 

Step Size Ax - 0. 01460736 

Initial Point Data: 

-0. 45340951 1.2645526 
± 
0.0 

0. 34633269 
±_ 

0.77348271 
e_ 

0.53874810 
± 
0.0 

N, 

-0.64625884 

Final Point: 

First 
Iteration 

X -0.43880215 

</ 1. 2769231 

} 0.0 

fc 0. 16793336 

fs 0.14470096 

9 0.21948106 

9 0. 52119923 

* 0. 0 

"z -0. 61823331 

N, 0. 78599464 

N) 
0. 0 

/Vy A/,      where N - normal vector 

0. 763U828 0.0 t0 shock 

Second 
Iteration 

•0.43880215 

1.2764755 

0.0 

0. 17218783 

0. 13455693 

0.22696227 

0. 51189300 

0.0 

•0.64325045 

0.76565583 

0.0 

Third 
Iteration 

-0. 43880215 

1.2768739 

0.0 

0. 15803909 

0. 1608:3586 

0.20741885 

0.53575372 

0.0 

•0.64156076 

0.76707221 

0.0 
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TABLE B-III (Cont.) 

Forth Iteration 

X -0.43880215 

V 1.2768463 

} 0.0 

fc 
0. 15898510 

fs 
0.15904675 

t 0.20877892 

0 0.53413956 

V 0.0 

N* -0.64152290 

N, 0.76710389 

»> 
:-\ ' 

Fifth Iteration 

-0.43880215 

1.2768457 

0.0 

0. 15900633 

0. 15900626 

0.20880932 

0.53410338 

0.0 

-0.64152295 

0.76710384 

0.0 

Convergence Test Criterion 

(n) (n) 

fc     -  fs 

fs 
(n) 

0.00001 

where 

Pc    - average pressure from compatibility equation 

Ps     - pressure from shock relations 
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Appendix C 

AUTOMATED INPUT PREPARATION 

For certain configurations,  the flow over the nose region may be 

described by two space variables.    In these cases,  the preparation of input 

data for the present three-dimensional program will be facilitated by 

certain modifications of the axisymmetric program described in Reference 

60.    For convenience,  FORTRAN listings of the relevant portions of the 

referenced program are reproduced.    The shaded statements indicate the 

changes. 
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The axially symmetric program of Reference 60 ordinarily uses 

a mesh composed of streamlines and rays normal to the body surface.    In 

order to prepare input data for the present program it is desirable to rotate 

these rays about a fixed point on the body surface until they are normal to 

the wind axis.    In doing so,   however,   it is essential that the resulting ray 

be located so that the backward characteristics from the first plane 

computed by the 3-D program intersect the initial data plane.    This 

condition is equivalent to requiring that the angle 

n -ß + 0 <9o° 

The indicated program changes will rotate the rays through 

successive 1-degree increments as soon as it is safe to do so (    fl   < 88. 5°) 

and will then punch the necessary data in the proper format.    FORTRAN 

unit 9 is used in the program as written above,   but this may,   of course, 

be altered to suit the requirements of the local computing system. 

C. 2 INPUT PROCEEDlRE 

The input to the axially symmetric program is set up as described 

in Reference 60,   VOL.   II.     If the ray rotation and punching are desired,   the 

user must punch a 1 in column 20 of "Card Y" (Ref 60,   p.   14 Vol.   II p.   14). 
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